Numerical technique for the 3D microarchitecture design of elastic composites inspired by crystal symmetries
A numerical methodology developed for the microarchitecture design of 3D elastic two-phase periodic composites with effective isotropic properties close to the theoretical bounds is here presented and analyzed. This methodology is formulated as a topology optimization problem and is implemented usin...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2020-02, Vol.359 (C), p.112760, Article 112760 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | C |
container_start_page | 112760 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 359 |
creator | Rossi, N. Yera, R. Méndez, C.G. Toro, S. Huespe, A.E. |
description | A numerical methodology developed for the microarchitecture design of 3D elastic two-phase periodic composites with effective isotropic properties close to the theoretical bounds is here presented and analyzed. This methodology is formulated as a topology optimization problem and is implemented using a level-set approach jointly with topological derivative.
The most salient characteristic of this methodology is the imposition of preestablished crystal symmetries to the designed topologies; we integrate a topological optimization formulation with crystal symmetries to design mechanical metamaterials.
The computational homogenization of the composite elastic properties is determined using a Fast Fourier Transform (FFT) technique. Due to the design domains are the primitive cells of Bravais lattices compatible with the space group imposed to the material layout, we have adapted the FFT technique to compute the effective properties in 3D parallelepiped domains.
In this work, to find the topologies satisfying the proposed targets, we test four space groups of the cubic crystal system. Thus, the achievement of composites with effective elasticity tensor having cubic symmetry is guaranteed, and the isotropic response is then enforced by adding only one scalar constraint to the topology optimization problem.
To assess the methodology, the following microarchitectures are designed and reported: two auxetic composites, three pentamode materials, and one maximum stiffness composite. With only one exception, all the remaining topologies display effective elastic properties with Zener coefficients approximating to 1.
•A numerical methodology for microarchitecture design of 3D elastic two-phase periodic composites is presented.•The effect of enforcing different crystal symmetries on the topology synthesis of isotropic composites is evaluated.•The numerical assessments aim at designing composites with effective properties close to the theoretical bounds.•The microstructure designs of auxetic, maximum stiffness and pentamode composites are assessed.•An FFT technique for 3D homogenization in parallelepiped domains is used for the topology optimization problem. |
doi_str_mv | 10.1016/j.cma.2019.112760 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1871761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782519306528</els_id><sourcerecordid>2353612557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-698bd9fdcf170cf3e8429cfc935571d6e3169f1b5bd37e9b8e93ea277bd38b883</originalsourceid><addsrcrecordid>eNp9UU2LFDEUDKLguPoDvAU992xeMt1J8CTr-gGLXvQc0q9fOxmmO2OSFubfm6YFPW0ghEeqinpVjL0GsQcB3e1pj5PfSwF2DyB1J56wHRhtGwnKPGU7IQ5to41sn7MXOZ9EPQbkjp2_LhOlgP7MC-FxDr8W4mNMvByJqw98CpiiT3gM9bssifhAOfyceRw5nX0uATnG6RJzBWQe5nwJiQbeXzmmay5VN1-niUoKlF-yZ6M_Z3r1971hPz7ef7_73Dx8-_Tl7v1DgwelS9NZ0w92HHAELXBUZA7S4ohWta2GoSMFnR2hb_tBabK9IavIS63rbHpj1A17s-nG6s9lXL0fMc5zXcHVVEB3UEGwgTAv6BIhJfTFRR_-DeuVQkunOiOsrZy3G-eSYg0qF3eKS5rrLk6qVnUgq8P_lFPMOdHoLilMPl0dCLe25U6utuXWttzWVuW82zhUc_kdKK22aUYaapzV9RDDI-w_t4yd-A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2353612557</pqid></control><display><type>article</type><title>Numerical technique for the 3D microarchitecture design of elastic composites inspired by crystal symmetries</title><source>Recercat</source><source>Elsevier ScienceDirect Journals</source><creator>Rossi, N. ; Yera, R. ; Méndez, C.G. ; Toro, S. ; Huespe, A.E.</creator><creatorcontrib>Rossi, N. ; Yera, R. ; Méndez, C.G. ; Toro, S. ; Huespe, A.E.</creatorcontrib><description>A numerical methodology developed for the microarchitecture design of 3D elastic two-phase periodic composites with effective isotropic properties close to the theoretical bounds is here presented and analyzed. This methodology is formulated as a topology optimization problem and is implemented using a level-set approach jointly with topological derivative.
The most salient characteristic of this methodology is the imposition of preestablished crystal symmetries to the designed topologies; we integrate a topological optimization formulation with crystal symmetries to design mechanical metamaterials.
The computational homogenization of the composite elastic properties is determined using a Fast Fourier Transform (FFT) technique. Due to the design domains are the primitive cells of Bravais lattices compatible with the space group imposed to the material layout, we have adapted the FFT technique to compute the effective properties in 3D parallelepiped domains.
In this work, to find the topologies satisfying the proposed targets, we test four space groups of the cubic crystal system. Thus, the achievement of composites with effective elasticity tensor having cubic symmetry is guaranteed, and the isotropic response is then enforced by adding only one scalar constraint to the topology optimization problem.
To assess the methodology, the following microarchitectures are designed and reported: two auxetic composites, three pentamode materials, and one maximum stiffness composite. With only one exception, all the remaining topologies display effective elastic properties with Zener coefficients approximating to 1.
•A numerical methodology for microarchitecture design of 3D elastic two-phase periodic composites is presented.•The effect of enforcing different crystal symmetries on the topology synthesis of isotropic composites is evaluated.•The numerical assessments aim at designing composites with effective properties close to the theoretical bounds.•The microstructure designs of auxetic, maximum stiffness and pentamode composites are assessed.•An FFT technique for 3D homogenization in parallelepiped domains is used for the topology optimization problem.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2019.112760</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>3D elastic metamaterials ; 3D microarchitecture synthesis ; Auxetic ; Auxetic, Pentamode and Stiffest composites ; Computer architecture ; Crystals ; Design ; Disseny i selecció de materials ; Domains ; Elastic properties ; Enginyeria dels materials ; Fast Fourier transformations ; Fourier transforms ; Lattices (mathematics) ; Mathematical models ; Metamaterials ; Methodology ; Optimization ; Parallelepipeds ; Pentamode and Stiffest composites ; Stiffness ; Tensors ; Three dimensional composites ; Topology design inspired by crystal symmetries ; Topology optimization ; Topology optimization algorithm ; Àrees temàtiques de la UPC</subject><ispartof>Computer methods in applied mechanics and engineering, 2020-02, Vol.359 (C), p.112760, Article 112760</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Feb 1, 2020</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain © 2019. Elsevier Attribution-NonCommercial-NoDerivatives 4.0 International https://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a></rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-698bd9fdcf170cf3e8429cfc935571d6e3169f1b5bd37e9b8e93ea277bd38b883</citedby><cites>FETCH-LOGICAL-c437t-698bd9fdcf170cf3e8429cfc935571d6e3169f1b5bd37e9b8e93ea277bd38b883</cites><orcidid>0000-0001-7239-9805 ; 0000-0001-8219-378X ; 000000018219378X ; 0000000172399805</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045782519306528$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,26951,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1871761$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rossi, N.</creatorcontrib><creatorcontrib>Yera, R.</creatorcontrib><creatorcontrib>Méndez, C.G.</creatorcontrib><creatorcontrib>Toro, S.</creatorcontrib><creatorcontrib>Huespe, A.E.</creatorcontrib><title>Numerical technique for the 3D microarchitecture design of elastic composites inspired by crystal symmetries</title><title>Computer methods in applied mechanics and engineering</title><description>A numerical methodology developed for the microarchitecture design of 3D elastic two-phase periodic composites with effective isotropic properties close to the theoretical bounds is here presented and analyzed. This methodology is formulated as a topology optimization problem and is implemented using a level-set approach jointly with topological derivative.
The most salient characteristic of this methodology is the imposition of preestablished crystal symmetries to the designed topologies; we integrate a topological optimization formulation with crystal symmetries to design mechanical metamaterials.
The computational homogenization of the composite elastic properties is determined using a Fast Fourier Transform (FFT) technique. Due to the design domains are the primitive cells of Bravais lattices compatible with the space group imposed to the material layout, we have adapted the FFT technique to compute the effective properties in 3D parallelepiped domains.
In this work, to find the topologies satisfying the proposed targets, we test four space groups of the cubic crystal system. Thus, the achievement of composites with effective elasticity tensor having cubic symmetry is guaranteed, and the isotropic response is then enforced by adding only one scalar constraint to the topology optimization problem.
To assess the methodology, the following microarchitectures are designed and reported: two auxetic composites, three pentamode materials, and one maximum stiffness composite. With only one exception, all the remaining topologies display effective elastic properties with Zener coefficients approximating to 1.
•A numerical methodology for microarchitecture design of 3D elastic two-phase periodic composites is presented.•The effect of enforcing different crystal symmetries on the topology synthesis of isotropic composites is evaluated.•The numerical assessments aim at designing composites with effective properties close to the theoretical bounds.•The microstructure designs of auxetic, maximum stiffness and pentamode composites are assessed.•An FFT technique for 3D homogenization in parallelepiped domains is used for the topology optimization problem.</description><subject>3D elastic metamaterials</subject><subject>3D microarchitecture synthesis</subject><subject>Auxetic</subject><subject>Auxetic, Pentamode and Stiffest composites</subject><subject>Computer architecture</subject><subject>Crystals</subject><subject>Design</subject><subject>Disseny i selecció de materials</subject><subject>Domains</subject><subject>Elastic properties</subject><subject>Enginyeria dels materials</subject><subject>Fast Fourier transformations</subject><subject>Fourier transforms</subject><subject>Lattices (mathematics)</subject><subject>Mathematical models</subject><subject>Metamaterials</subject><subject>Methodology</subject><subject>Optimization</subject><subject>Parallelepipeds</subject><subject>Pentamode and Stiffest composites</subject><subject>Stiffness</subject><subject>Tensors</subject><subject>Three dimensional composites</subject><subject>Topology design inspired by crystal symmetries</subject><subject>Topology optimization</subject><subject>Topology optimization algorithm</subject><subject>Àrees temàtiques de la UPC</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNp9UU2LFDEUDKLguPoDvAU992xeMt1J8CTr-gGLXvQc0q9fOxmmO2OSFubfm6YFPW0ghEeqinpVjL0GsQcB3e1pj5PfSwF2DyB1J56wHRhtGwnKPGU7IQ5to41sn7MXOZ9EPQbkjp2_LhOlgP7MC-FxDr8W4mNMvByJqw98CpiiT3gM9bssifhAOfyceRw5nX0uATnG6RJzBWQe5nwJiQbeXzmmay5VN1-niUoKlF-yZ6M_Z3r1971hPz7ef7_73Dx8-_Tl7v1DgwelS9NZ0w92HHAELXBUZA7S4ohWta2GoSMFnR2hb_tBabK9IavIS63rbHpj1A17s-nG6s9lXL0fMc5zXcHVVEB3UEGwgTAv6BIhJfTFRR_-DeuVQkunOiOsrZy3G-eSYg0qF3eKS5rrLk6qVnUgq8P_lFPMOdHoLilMPl0dCLe25U6utuXWttzWVuW82zhUc_kdKK22aUYaapzV9RDDI-w_t4yd-A</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Rossi, N.</creator><creator>Yera, R.</creator><creator>Méndez, C.G.</creator><creator>Toro, S.</creator><creator>Huespe, A.E.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>XX2</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7239-9805</orcidid><orcidid>https://orcid.org/0000-0001-8219-378X</orcidid><orcidid>https://orcid.org/000000018219378X</orcidid><orcidid>https://orcid.org/0000000172399805</orcidid></search><sort><creationdate>20200201</creationdate><title>Numerical technique for the 3D microarchitecture design of elastic composites inspired by crystal symmetries</title><author>Rossi, N. ; Yera, R. ; Méndez, C.G. ; Toro, S. ; Huespe, A.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-698bd9fdcf170cf3e8429cfc935571d6e3169f1b5bd37e9b8e93ea277bd38b883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3D elastic metamaterials</topic><topic>3D microarchitecture synthesis</topic><topic>Auxetic</topic><topic>Auxetic, Pentamode and Stiffest composites</topic><topic>Computer architecture</topic><topic>Crystals</topic><topic>Design</topic><topic>Disseny i selecció de materials</topic><topic>Domains</topic><topic>Elastic properties</topic><topic>Enginyeria dels materials</topic><topic>Fast Fourier transformations</topic><topic>Fourier transforms</topic><topic>Lattices (mathematics)</topic><topic>Mathematical models</topic><topic>Metamaterials</topic><topic>Methodology</topic><topic>Optimization</topic><topic>Parallelepipeds</topic><topic>Pentamode and Stiffest composites</topic><topic>Stiffness</topic><topic>Tensors</topic><topic>Three dimensional composites</topic><topic>Topology design inspired by crystal symmetries</topic><topic>Topology optimization</topic><topic>Topology optimization algorithm</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rossi, N.</creatorcontrib><creatorcontrib>Yera, R.</creatorcontrib><creatorcontrib>Méndez, C.G.</creatorcontrib><creatorcontrib>Toro, S.</creatorcontrib><creatorcontrib>Huespe, A.E.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Recercat</collection><collection>OSTI.GOV</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rossi, N.</au><au>Yera, R.</au><au>Méndez, C.G.</au><au>Toro, S.</au><au>Huespe, A.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical technique for the 3D microarchitecture design of elastic composites inspired by crystal symmetries</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>359</volume><issue>C</issue><spage>112760</spage><pages>112760-</pages><artnum>112760</artnum><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>A numerical methodology developed for the microarchitecture design of 3D elastic two-phase periodic composites with effective isotropic properties close to the theoretical bounds is here presented and analyzed. This methodology is formulated as a topology optimization problem and is implemented using a level-set approach jointly with topological derivative.
The most salient characteristic of this methodology is the imposition of preestablished crystal symmetries to the designed topologies; we integrate a topological optimization formulation with crystal symmetries to design mechanical metamaterials.
The computational homogenization of the composite elastic properties is determined using a Fast Fourier Transform (FFT) technique. Due to the design domains are the primitive cells of Bravais lattices compatible with the space group imposed to the material layout, we have adapted the FFT technique to compute the effective properties in 3D parallelepiped domains.
In this work, to find the topologies satisfying the proposed targets, we test four space groups of the cubic crystal system. Thus, the achievement of composites with effective elasticity tensor having cubic symmetry is guaranteed, and the isotropic response is then enforced by adding only one scalar constraint to the topology optimization problem.
To assess the methodology, the following microarchitectures are designed and reported: two auxetic composites, three pentamode materials, and one maximum stiffness composite. With only one exception, all the remaining topologies display effective elastic properties with Zener coefficients approximating to 1.
•A numerical methodology for microarchitecture design of 3D elastic two-phase periodic composites is presented.•The effect of enforcing different crystal symmetries on the topology synthesis of isotropic composites is evaluated.•The numerical assessments aim at designing composites with effective properties close to the theoretical bounds.•The microstructure designs of auxetic, maximum stiffness and pentamode composites are assessed.•An FFT technique for 3D homogenization in parallelepiped domains is used for the topology optimization problem.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2019.112760</doi><orcidid>https://orcid.org/0000-0001-7239-9805</orcidid><orcidid>https://orcid.org/0000-0001-8219-378X</orcidid><orcidid>https://orcid.org/000000018219378X</orcidid><orcidid>https://orcid.org/0000000172399805</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2020-02, Vol.359 (C), p.112760, Article 112760 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_osti_scitechconnect_1871761 |
source | Recercat; Elsevier ScienceDirect Journals |
subjects | 3D elastic metamaterials 3D microarchitecture synthesis Auxetic Auxetic, Pentamode and Stiffest composites Computer architecture Crystals Design Disseny i selecció de materials Domains Elastic properties Enginyeria dels materials Fast Fourier transformations Fourier transforms Lattices (mathematics) Mathematical models Metamaterials Methodology Optimization Parallelepipeds Pentamode and Stiffest composites Stiffness Tensors Three dimensional composites Topology design inspired by crystal symmetries Topology optimization Topology optimization algorithm Àrees temàtiques de la UPC |
title | Numerical technique for the 3D microarchitecture design of elastic composites inspired by crystal symmetries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T08%3A14%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20technique%20for%20the%203D%20microarchitecture%20design%20of%20elastic%20composites%20inspired%20by%20crystal%20symmetries&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Rossi,%20N.&rft.date=2020-02-01&rft.volume=359&rft.issue=C&rft.spage=112760&rft.pages=112760-&rft.artnum=112760&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2019.112760&rft_dat=%3Cproquest_osti_%3E2353612557%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2353612557&rft_id=info:pmid/&rft_els_id=S0045782519306528&rfr_iscdi=true |