Numerical technique for the 3D microarchitecture design of elastic composites inspired by crystal symmetries

A numerical methodology developed for the microarchitecture design of 3D elastic two-phase periodic composites with effective isotropic properties close to the theoretical bounds is here presented and analyzed. This methodology is formulated as a topology optimization problem and is implemented usin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2020-02, Vol.359 (C), p.112760, Article 112760
Hauptverfasser: Rossi, N., Yera, R., Méndez, C.G., Toro, S., Huespe, A.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page 112760
container_title Computer methods in applied mechanics and engineering
container_volume 359
creator Rossi, N.
Yera, R.
Méndez, C.G.
Toro, S.
Huespe, A.E.
description A numerical methodology developed for the microarchitecture design of 3D elastic two-phase periodic composites with effective isotropic properties close to the theoretical bounds is here presented and analyzed. This methodology is formulated as a topology optimization problem and is implemented using a level-set approach jointly with topological derivative. The most salient characteristic of this methodology is the imposition of preestablished crystal symmetries to the designed topologies; we integrate a topological optimization formulation with crystal symmetries to design mechanical metamaterials. The computational homogenization of the composite elastic properties is determined using a Fast Fourier Transform (FFT) technique. Due to the design domains are the primitive cells of Bravais lattices compatible with the space group imposed to the material layout, we have adapted the FFT technique to compute the effective properties in 3D parallelepiped domains. In this work, to find the topologies satisfying the proposed targets, we test four space groups of the cubic crystal system. Thus, the achievement of composites with effective elasticity tensor having cubic symmetry is guaranteed, and the isotropic response is then enforced by adding only one scalar constraint to the topology optimization problem. To assess the methodology, the following microarchitectures are designed and reported: two auxetic composites, three pentamode materials, and one maximum stiffness composite. With only one exception, all the remaining topologies display effective elastic properties with Zener coefficients approximating to 1. •A numerical methodology for microarchitecture design of 3D elastic two-phase periodic composites is presented.•The effect of enforcing different crystal symmetries on the topology synthesis of isotropic composites is evaluated.•The numerical assessments aim at designing composites with effective properties close to the theoretical bounds.•The microstructure designs of auxetic, maximum stiffness and pentamode composites are assessed.•An FFT technique for 3D homogenization in parallelepiped domains is used for the topology optimization problem.
doi_str_mv 10.1016/j.cma.2019.112760
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1871761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782519306528</els_id><sourcerecordid>2353612557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-698bd9fdcf170cf3e8429cfc935571d6e3169f1b5bd37e9b8e93ea277bd38b883</originalsourceid><addsrcrecordid>eNp9UU2LFDEUDKLguPoDvAU992xeMt1J8CTr-gGLXvQc0q9fOxmmO2OSFubfm6YFPW0ghEeqinpVjL0GsQcB3e1pj5PfSwF2DyB1J56wHRhtGwnKPGU7IQ5to41sn7MXOZ9EPQbkjp2_LhOlgP7MC-FxDr8W4mNMvByJqw98CpiiT3gM9bssifhAOfyceRw5nX0uATnG6RJzBWQe5nwJiQbeXzmmay5VN1-niUoKlF-yZ6M_Z3r1971hPz7ef7_73Dx8-_Tl7v1DgwelS9NZ0w92HHAELXBUZA7S4ohWta2GoSMFnR2hb_tBabK9IavIS63rbHpj1A17s-nG6s9lXL0fMc5zXcHVVEB3UEGwgTAv6BIhJfTFRR_-DeuVQkunOiOsrZy3G-eSYg0qF3eKS5rrLk6qVnUgq8P_lFPMOdHoLilMPl0dCLe25U6utuXWttzWVuW82zhUc_kdKK22aUYaapzV9RDDI-w_t4yd-A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2353612557</pqid></control><display><type>article</type><title>Numerical technique for the 3D microarchitecture design of elastic composites inspired by crystal symmetries</title><source>Recercat</source><source>Elsevier ScienceDirect Journals</source><creator>Rossi, N. ; Yera, R. ; Méndez, C.G. ; Toro, S. ; Huespe, A.E.</creator><creatorcontrib>Rossi, N. ; Yera, R. ; Méndez, C.G. ; Toro, S. ; Huespe, A.E.</creatorcontrib><description>A numerical methodology developed for the microarchitecture design of 3D elastic two-phase periodic composites with effective isotropic properties close to the theoretical bounds is here presented and analyzed. This methodology is formulated as a topology optimization problem and is implemented using a level-set approach jointly with topological derivative. The most salient characteristic of this methodology is the imposition of preestablished crystal symmetries to the designed topologies; we integrate a topological optimization formulation with crystal symmetries to design mechanical metamaterials. The computational homogenization of the composite elastic properties is determined using a Fast Fourier Transform (FFT) technique. Due to the design domains are the primitive cells of Bravais lattices compatible with the space group imposed to the material layout, we have adapted the FFT technique to compute the effective properties in 3D parallelepiped domains. In this work, to find the topologies satisfying the proposed targets, we test four space groups of the cubic crystal system. Thus, the achievement of composites with effective elasticity tensor having cubic symmetry is guaranteed, and the isotropic response is then enforced by adding only one scalar constraint to the topology optimization problem. To assess the methodology, the following microarchitectures are designed and reported: two auxetic composites, three pentamode materials, and one maximum stiffness composite. With only one exception, all the remaining topologies display effective elastic properties with Zener coefficients approximating to 1. •A numerical methodology for microarchitecture design of 3D elastic two-phase periodic composites is presented.•The effect of enforcing different crystal symmetries on the topology synthesis of isotropic composites is evaluated.•The numerical assessments aim at designing composites with effective properties close to the theoretical bounds.•The microstructure designs of auxetic, maximum stiffness and pentamode composites are assessed.•An FFT technique for 3D homogenization in parallelepiped domains is used for the topology optimization problem.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2019.112760</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>3D elastic metamaterials ; 3D microarchitecture synthesis ; Auxetic ; Auxetic, Pentamode and Stiffest composites ; Computer architecture ; Crystals ; Design ; Disseny i selecció de materials ; Domains ; Elastic properties ; Enginyeria dels materials ; Fast Fourier transformations ; Fourier transforms ; Lattices (mathematics) ; Mathematical models ; Metamaterials ; Methodology ; Optimization ; Parallelepipeds ; Pentamode and Stiffest composites ; Stiffness ; Tensors ; Three dimensional composites ; Topology design inspired by crystal symmetries ; Topology optimization ; Topology optimization algorithm ; Àrees temàtiques de la UPC</subject><ispartof>Computer methods in applied mechanics and engineering, 2020-02, Vol.359 (C), p.112760, Article 112760</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Feb 1, 2020</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain © 2019. Elsevier Attribution-NonCommercial-NoDerivatives 4.0 International https://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/"&gt;http://creativecommons.org/licenses/by-nc-nd/3.0/es/&lt;/a&gt;</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-698bd9fdcf170cf3e8429cfc935571d6e3169f1b5bd37e9b8e93ea277bd38b883</citedby><cites>FETCH-LOGICAL-c437t-698bd9fdcf170cf3e8429cfc935571d6e3169f1b5bd37e9b8e93ea277bd38b883</cites><orcidid>0000-0001-7239-9805 ; 0000-0001-8219-378X ; 000000018219378X ; 0000000172399805</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045782519306528$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,26951,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1871761$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rossi, N.</creatorcontrib><creatorcontrib>Yera, R.</creatorcontrib><creatorcontrib>Méndez, C.G.</creatorcontrib><creatorcontrib>Toro, S.</creatorcontrib><creatorcontrib>Huespe, A.E.</creatorcontrib><title>Numerical technique for the 3D microarchitecture design of elastic composites inspired by crystal symmetries</title><title>Computer methods in applied mechanics and engineering</title><description>A numerical methodology developed for the microarchitecture design of 3D elastic two-phase periodic composites with effective isotropic properties close to the theoretical bounds is here presented and analyzed. This methodology is formulated as a topology optimization problem and is implemented using a level-set approach jointly with topological derivative. The most salient characteristic of this methodology is the imposition of preestablished crystal symmetries to the designed topologies; we integrate a topological optimization formulation with crystal symmetries to design mechanical metamaterials. The computational homogenization of the composite elastic properties is determined using a Fast Fourier Transform (FFT) technique. Due to the design domains are the primitive cells of Bravais lattices compatible with the space group imposed to the material layout, we have adapted the FFT technique to compute the effective properties in 3D parallelepiped domains. In this work, to find the topologies satisfying the proposed targets, we test four space groups of the cubic crystal system. Thus, the achievement of composites with effective elasticity tensor having cubic symmetry is guaranteed, and the isotropic response is then enforced by adding only one scalar constraint to the topology optimization problem. To assess the methodology, the following microarchitectures are designed and reported: two auxetic composites, three pentamode materials, and one maximum stiffness composite. With only one exception, all the remaining topologies display effective elastic properties with Zener coefficients approximating to 1. •A numerical methodology for microarchitecture design of 3D elastic two-phase periodic composites is presented.•The effect of enforcing different crystal symmetries on the topology synthesis of isotropic composites is evaluated.•The numerical assessments aim at designing composites with effective properties close to the theoretical bounds.•The microstructure designs of auxetic, maximum stiffness and pentamode composites are assessed.•An FFT technique for 3D homogenization in parallelepiped domains is used for the topology optimization problem.</description><subject>3D elastic metamaterials</subject><subject>3D microarchitecture synthesis</subject><subject>Auxetic</subject><subject>Auxetic, Pentamode and Stiffest composites</subject><subject>Computer architecture</subject><subject>Crystals</subject><subject>Design</subject><subject>Disseny i selecció de materials</subject><subject>Domains</subject><subject>Elastic properties</subject><subject>Enginyeria dels materials</subject><subject>Fast Fourier transformations</subject><subject>Fourier transforms</subject><subject>Lattices (mathematics)</subject><subject>Mathematical models</subject><subject>Metamaterials</subject><subject>Methodology</subject><subject>Optimization</subject><subject>Parallelepipeds</subject><subject>Pentamode and Stiffest composites</subject><subject>Stiffness</subject><subject>Tensors</subject><subject>Three dimensional composites</subject><subject>Topology design inspired by crystal symmetries</subject><subject>Topology optimization</subject><subject>Topology optimization algorithm</subject><subject>Àrees temàtiques de la UPC</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNp9UU2LFDEUDKLguPoDvAU992xeMt1J8CTr-gGLXvQc0q9fOxmmO2OSFubfm6YFPW0ghEeqinpVjL0GsQcB3e1pj5PfSwF2DyB1J56wHRhtGwnKPGU7IQ5to41sn7MXOZ9EPQbkjp2_LhOlgP7MC-FxDr8W4mNMvByJqw98CpiiT3gM9bssifhAOfyceRw5nX0uATnG6RJzBWQe5nwJiQbeXzmmay5VN1-niUoKlF-yZ6M_Z3r1971hPz7ef7_73Dx8-_Tl7v1DgwelS9NZ0w92HHAELXBUZA7S4ohWta2GoSMFnR2hb_tBabK9IavIS63rbHpj1A17s-nG6s9lXL0fMc5zXcHVVEB3UEGwgTAv6BIhJfTFRR_-DeuVQkunOiOsrZy3G-eSYg0qF3eKS5rrLk6qVnUgq8P_lFPMOdHoLilMPl0dCLe25U6utuXWttzWVuW82zhUc_kdKK22aUYaapzV9RDDI-w_t4yd-A</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Rossi, N.</creator><creator>Yera, R.</creator><creator>Méndez, C.G.</creator><creator>Toro, S.</creator><creator>Huespe, A.E.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>XX2</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7239-9805</orcidid><orcidid>https://orcid.org/0000-0001-8219-378X</orcidid><orcidid>https://orcid.org/000000018219378X</orcidid><orcidid>https://orcid.org/0000000172399805</orcidid></search><sort><creationdate>20200201</creationdate><title>Numerical technique for the 3D microarchitecture design of elastic composites inspired by crystal symmetries</title><author>Rossi, N. ; Yera, R. ; Méndez, C.G. ; Toro, S. ; Huespe, A.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-698bd9fdcf170cf3e8429cfc935571d6e3169f1b5bd37e9b8e93ea277bd38b883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3D elastic metamaterials</topic><topic>3D microarchitecture synthesis</topic><topic>Auxetic</topic><topic>Auxetic, Pentamode and Stiffest composites</topic><topic>Computer architecture</topic><topic>Crystals</topic><topic>Design</topic><topic>Disseny i selecció de materials</topic><topic>Domains</topic><topic>Elastic properties</topic><topic>Enginyeria dels materials</topic><topic>Fast Fourier transformations</topic><topic>Fourier transforms</topic><topic>Lattices (mathematics)</topic><topic>Mathematical models</topic><topic>Metamaterials</topic><topic>Methodology</topic><topic>Optimization</topic><topic>Parallelepipeds</topic><topic>Pentamode and Stiffest composites</topic><topic>Stiffness</topic><topic>Tensors</topic><topic>Three dimensional composites</topic><topic>Topology design inspired by crystal symmetries</topic><topic>Topology optimization</topic><topic>Topology optimization algorithm</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rossi, N.</creatorcontrib><creatorcontrib>Yera, R.</creatorcontrib><creatorcontrib>Méndez, C.G.</creatorcontrib><creatorcontrib>Toro, S.</creatorcontrib><creatorcontrib>Huespe, A.E.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Recercat</collection><collection>OSTI.GOV</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rossi, N.</au><au>Yera, R.</au><au>Méndez, C.G.</au><au>Toro, S.</au><au>Huespe, A.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical technique for the 3D microarchitecture design of elastic composites inspired by crystal symmetries</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>359</volume><issue>C</issue><spage>112760</spage><pages>112760-</pages><artnum>112760</artnum><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>A numerical methodology developed for the microarchitecture design of 3D elastic two-phase periodic composites with effective isotropic properties close to the theoretical bounds is here presented and analyzed. This methodology is formulated as a topology optimization problem and is implemented using a level-set approach jointly with topological derivative. The most salient characteristic of this methodology is the imposition of preestablished crystal symmetries to the designed topologies; we integrate a topological optimization formulation with crystal symmetries to design mechanical metamaterials. The computational homogenization of the composite elastic properties is determined using a Fast Fourier Transform (FFT) technique. Due to the design domains are the primitive cells of Bravais lattices compatible with the space group imposed to the material layout, we have adapted the FFT technique to compute the effective properties in 3D parallelepiped domains. In this work, to find the topologies satisfying the proposed targets, we test four space groups of the cubic crystal system. Thus, the achievement of composites with effective elasticity tensor having cubic symmetry is guaranteed, and the isotropic response is then enforced by adding only one scalar constraint to the topology optimization problem. To assess the methodology, the following microarchitectures are designed and reported: two auxetic composites, three pentamode materials, and one maximum stiffness composite. With only one exception, all the remaining topologies display effective elastic properties with Zener coefficients approximating to 1. •A numerical methodology for microarchitecture design of 3D elastic two-phase periodic composites is presented.•The effect of enforcing different crystal symmetries on the topology synthesis of isotropic composites is evaluated.•The numerical assessments aim at designing composites with effective properties close to the theoretical bounds.•The microstructure designs of auxetic, maximum stiffness and pentamode composites are assessed.•An FFT technique for 3D homogenization in parallelepiped domains is used for the topology optimization problem.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2019.112760</doi><orcidid>https://orcid.org/0000-0001-7239-9805</orcidid><orcidid>https://orcid.org/0000-0001-8219-378X</orcidid><orcidid>https://orcid.org/000000018219378X</orcidid><orcidid>https://orcid.org/0000000172399805</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2020-02, Vol.359 (C), p.112760, Article 112760
issn 0045-7825
1879-2138
language eng
recordid cdi_osti_scitechconnect_1871761
source Recercat; Elsevier ScienceDirect Journals
subjects 3D elastic metamaterials
3D microarchitecture synthesis
Auxetic
Auxetic, Pentamode and Stiffest composites
Computer architecture
Crystals
Design
Disseny i selecció de materials
Domains
Elastic properties
Enginyeria dels materials
Fast Fourier transformations
Fourier transforms
Lattices (mathematics)
Mathematical models
Metamaterials
Methodology
Optimization
Parallelepipeds
Pentamode and Stiffest composites
Stiffness
Tensors
Three dimensional composites
Topology design inspired by crystal symmetries
Topology optimization
Topology optimization algorithm
Àrees temàtiques de la UPC
title Numerical technique for the 3D microarchitecture design of elastic composites inspired by crystal symmetries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T08%3A14%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20technique%20for%20the%203D%20microarchitecture%20design%20of%20elastic%20composites%20inspired%20by%20crystal%20symmetries&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Rossi,%20N.&rft.date=2020-02-01&rft.volume=359&rft.issue=C&rft.spage=112760&rft.pages=112760-&rft.artnum=112760&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2019.112760&rft_dat=%3Cproquest_osti_%3E2353612557%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2353612557&rft_id=info:pmid/&rft_els_id=S0045782519306528&rfr_iscdi=true