Unravelling the Nature of the Intrinsic Complex Structure of Binary‐Phase Na‐Layered Oxides
The layered sodium transition metal oxide, NaTMO2 (TM = transition metal), with a binary or ternary phases has displayed outstanding electrochemical performance as a new class of strategy cathode materials for sodium‐ion batteries (SIBs). Herein, an in‐depth phase analysis of developed Na1−xTMO2 cat...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2022-07, Vol.34 (29), p.e2202137-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 29 |
container_start_page | e2202137 |
container_title | Advanced materials (Weinheim) |
container_volume | 34 |
creator | Paidi, Anil K. Park, Woon Bae Ramakrishnan, Prakash Lee, Seong‐Hun Lee, Jin‐Woong Lee, Kug‐Seung Ahn, Hyungju Liu, Tongchao Gim, Jihyeon Avdeev, Maxim Pyo, Myoungho Sohn, Jung Inn Amine, Khalil Sohn, Kee‐Sun Shin, Tae Joo Ahn, Docheon Lu, Jun |
description | The layered sodium transition metal oxide, NaTMO2 (TM = transition metal), with a binary or ternary phases has displayed outstanding electrochemical performance as a new class of strategy cathode materials for sodium‐ion batteries (SIBs). Herein, an in‐depth phase analysis of developed Na1−xTMO2 cathode materials, Na0.76Ni0.20Fe0.40Mn0.40O2 with P2‐ and O3‐type phases (NFMO‐P2/O3) is offered. Structural visualization on an atomic scale is also provided and the following findings are unveiled: i) the existence of a mixed‐phase intergrowth layer distribution and unequal distribution of P2 and O3 phases along two different crystal plane indices and ii) a complete reversible charge/discharge process for the initial two cycles that displays a simple phase transformation, which is unprecedented. Moreover, first‐principles calculations support the evidence of the formation of a binary NFMO‐P2/O3 compound, over the proposed hypothetical monophasic structures (O3, P3, O′3, and P2 phases). As a result, the synergetic effect of the simultaneous existence of P‐ and O‐type phases with their unique structures allows an extraordinary level of capacity retention in a wide range of voltage (1.5–4.5 V). It is believed that the insightful understanding of the proposed materials can introduce new perspectives for the development of high‐voltage cathode materials for SIBs.
In‐depth phase analysis of developed Na1−xTMO2 cathode materials, NFMO with P2‐ and O3‐type phases (NFMO‐P2/O3) is offered. As a result, the synergetic effect of the simultaneous existence of P‐ and O‐type phases with their unique structures allows an extraordinary level of capacity retention in a wide range of voltage (1.5–4.5 V). |
doi_str_mv | 10.1002/adma.202202137 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1871239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2659228039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4407-1ba856cd4013d2960b813a5863547587f205b241829a86075d06c1e77995671d3</originalsourceid><addsrcrecordid>eNqF0c1OGzEQB3CrAkFKufaIVnDpZdOxd_11DIGWSClUajlbjtchRrveYO8CufUR-ox9kjokgMQFyZJt6Td_eTwIfcYwxADkq64aPSRA0sIF_4AGmBKclyDpDhqALGguWSn20ccYbwFAMmB7aL-gFAglMEDq2gd9b-va-ZusW9jsUnd9sFk7f7pNfBecj85k47ZZ1vYx-9WF3jyTU-d1WP378_fnQsd1bTpO9coGW2VXj66y8RPanes62sPtfoCuv53_Hl_k06vvk_FompuyBJ7jmRaUmaoEXFQkvXImcKGpYAUtORV8ToDOSIkFkVow4LQCZrDlXErKOK6KA3S8yW1j51Q0rrNmYVrvrekUFhyTQib0ZYOWob3rbexU46JJzWtv2z4qwqgkRMATPXlDb9s--NRCUhJLRgWs1XCjTGhjDHaulsE16UsUBrWej1rPR73MJxUcbWP7WWOrF_48kATkBjy42q7eiVOjsx-j1_D_fPSavQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691965809</pqid></control><display><type>article</type><title>Unravelling the Nature of the Intrinsic Complex Structure of Binary‐Phase Na‐Layered Oxides</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Paidi, Anil K. ; Park, Woon Bae ; Ramakrishnan, Prakash ; Lee, Seong‐Hun ; Lee, Jin‐Woong ; Lee, Kug‐Seung ; Ahn, Hyungju ; Liu, Tongchao ; Gim, Jihyeon ; Avdeev, Maxim ; Pyo, Myoungho ; Sohn, Jung Inn ; Amine, Khalil ; Sohn, Kee‐Sun ; Shin, Tae Joo ; Ahn, Docheon ; Lu, Jun</creator><creatorcontrib>Paidi, Anil K. ; Park, Woon Bae ; Ramakrishnan, Prakash ; Lee, Seong‐Hun ; Lee, Jin‐Woong ; Lee, Kug‐Seung ; Ahn, Hyungju ; Liu, Tongchao ; Gim, Jihyeon ; Avdeev, Maxim ; Pyo, Myoungho ; Sohn, Jung Inn ; Amine, Khalil ; Sohn, Kee‐Sun ; Shin, Tae Joo ; Ahn, Docheon ; Lu, Jun</creatorcontrib><description>The layered sodium transition metal oxide, NaTMO2 (TM = transition metal), with a binary or ternary phases has displayed outstanding electrochemical performance as a new class of strategy cathode materials for sodium‐ion batteries (SIBs). Herein, an in‐depth phase analysis of developed Na1−xTMO2 cathode materials, Na0.76Ni0.20Fe0.40Mn0.40O2 with P2‐ and O3‐type phases (NFMO‐P2/O3) is offered. Structural visualization on an atomic scale is also provided and the following findings are unveiled: i) the existence of a mixed‐phase intergrowth layer distribution and unequal distribution of P2 and O3 phases along two different crystal plane indices and ii) a complete reversible charge/discharge process for the initial two cycles that displays a simple phase transformation, which is unprecedented. Moreover, first‐principles calculations support the evidence of the formation of a binary NFMO‐P2/O3 compound, over the proposed hypothetical monophasic structures (O3, P3, O′3, and P2 phases). As a result, the synergetic effect of the simultaneous existence of P‐ and O‐type phases with their unique structures allows an extraordinary level of capacity retention in a wide range of voltage (1.5–4.5 V). It is believed that the insightful understanding of the proposed materials can introduce new perspectives for the development of high‐voltage cathode materials for SIBs.
In‐depth phase analysis of developed Na1−xTMO2 cathode materials, NFMO with P2‐ and O3‐type phases (NFMO‐P2/O3) is offered. As a result, the synergetic effect of the simultaneous existence of P‐ and O‐type phases with their unique structures allows an extraordinary level of capacity retention in a wide range of voltage (1.5–4.5 V).</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202202137</identifier><identifier>PMID: 35502520</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Cathodes ; Electric potential ; Electrochemical analysis ; Electrode materials ; Materials science ; Na‐ion batteries ; O3 phase ; P2 phase ; phase analysis ; Phase transitions ; Phases ; Sodium ; Sodium-ion batteries ; Ternary systems ; Transition metal oxides ; Voltage</subject><ispartof>Advanced materials (Weinheim), 2022-07, Vol.34 (29), p.e2202137-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4407-1ba856cd4013d2960b813a5863547587f205b241829a86075d06c1e77995671d3</citedby><cites>FETCH-LOGICAL-c4407-1ba856cd4013d2960b813a5863547587f205b241829a86075d06c1e77995671d3</cites><orcidid>0000-0003-0858-8577 ; 0000000308588577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202202137$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202202137$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35502520$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1871239$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Paidi, Anil K.</creatorcontrib><creatorcontrib>Park, Woon Bae</creatorcontrib><creatorcontrib>Ramakrishnan, Prakash</creatorcontrib><creatorcontrib>Lee, Seong‐Hun</creatorcontrib><creatorcontrib>Lee, Jin‐Woong</creatorcontrib><creatorcontrib>Lee, Kug‐Seung</creatorcontrib><creatorcontrib>Ahn, Hyungju</creatorcontrib><creatorcontrib>Liu, Tongchao</creatorcontrib><creatorcontrib>Gim, Jihyeon</creatorcontrib><creatorcontrib>Avdeev, Maxim</creatorcontrib><creatorcontrib>Pyo, Myoungho</creatorcontrib><creatorcontrib>Sohn, Jung Inn</creatorcontrib><creatorcontrib>Amine, Khalil</creatorcontrib><creatorcontrib>Sohn, Kee‐Sun</creatorcontrib><creatorcontrib>Shin, Tae Joo</creatorcontrib><creatorcontrib>Ahn, Docheon</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><title>Unravelling the Nature of the Intrinsic Complex Structure of Binary‐Phase Na‐Layered Oxides</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The layered sodium transition metal oxide, NaTMO2 (TM = transition metal), with a binary or ternary phases has displayed outstanding electrochemical performance as a new class of strategy cathode materials for sodium‐ion batteries (SIBs). Herein, an in‐depth phase analysis of developed Na1−xTMO2 cathode materials, Na0.76Ni0.20Fe0.40Mn0.40O2 with P2‐ and O3‐type phases (NFMO‐P2/O3) is offered. Structural visualization on an atomic scale is also provided and the following findings are unveiled: i) the existence of a mixed‐phase intergrowth layer distribution and unequal distribution of P2 and O3 phases along two different crystal plane indices and ii) a complete reversible charge/discharge process for the initial two cycles that displays a simple phase transformation, which is unprecedented. Moreover, first‐principles calculations support the evidence of the formation of a binary NFMO‐P2/O3 compound, over the proposed hypothetical monophasic structures (O3, P3, O′3, and P2 phases). As a result, the synergetic effect of the simultaneous existence of P‐ and O‐type phases with their unique structures allows an extraordinary level of capacity retention in a wide range of voltage (1.5–4.5 V). It is believed that the insightful understanding of the proposed materials can introduce new perspectives for the development of high‐voltage cathode materials for SIBs.
In‐depth phase analysis of developed Na1−xTMO2 cathode materials, NFMO with P2‐ and O3‐type phases (NFMO‐P2/O3) is offered. As a result, the synergetic effect of the simultaneous existence of P‐ and O‐type phases with their unique structures allows an extraordinary level of capacity retention in a wide range of voltage (1.5–4.5 V).</description><subject>Cathodes</subject><subject>Electric potential</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Materials science</subject><subject>Na‐ion batteries</subject><subject>O3 phase</subject><subject>P2 phase</subject><subject>phase analysis</subject><subject>Phase transitions</subject><subject>Phases</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Ternary systems</subject><subject>Transition metal oxides</subject><subject>Voltage</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqF0c1OGzEQB3CrAkFKufaIVnDpZdOxd_11DIGWSClUajlbjtchRrveYO8CufUR-ox9kjokgMQFyZJt6Td_eTwIfcYwxADkq64aPSRA0sIF_4AGmBKclyDpDhqALGguWSn20ccYbwFAMmB7aL-gFAglMEDq2gd9b-va-ZusW9jsUnd9sFk7f7pNfBecj85k47ZZ1vYx-9WF3jyTU-d1WP378_fnQsd1bTpO9coGW2VXj66y8RPanes62sPtfoCuv53_Hl_k06vvk_FompuyBJ7jmRaUmaoEXFQkvXImcKGpYAUtORV8ToDOSIkFkVow4LQCZrDlXErKOK6KA3S8yW1j51Q0rrNmYVrvrekUFhyTQib0ZYOWob3rbexU46JJzWtv2z4qwqgkRMATPXlDb9s--NRCUhJLRgWs1XCjTGhjDHaulsE16UsUBrWej1rPR73MJxUcbWP7WWOrF_48kATkBjy42q7eiVOjsx-j1_D_fPSavQ</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Paidi, Anil K.</creator><creator>Park, Woon Bae</creator><creator>Ramakrishnan, Prakash</creator><creator>Lee, Seong‐Hun</creator><creator>Lee, Jin‐Woong</creator><creator>Lee, Kug‐Seung</creator><creator>Ahn, Hyungju</creator><creator>Liu, Tongchao</creator><creator>Gim, Jihyeon</creator><creator>Avdeev, Maxim</creator><creator>Pyo, Myoungho</creator><creator>Sohn, Jung Inn</creator><creator>Amine, Khalil</creator><creator>Sohn, Kee‐Sun</creator><creator>Shin, Tae Joo</creator><creator>Ahn, Docheon</creator><creator>Lu, Jun</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley & Sons)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0858-8577</orcidid><orcidid>https://orcid.org/0000000308588577</orcidid></search><sort><creationdate>20220701</creationdate><title>Unravelling the Nature of the Intrinsic Complex Structure of Binary‐Phase Na‐Layered Oxides</title><author>Paidi, Anil K. ; Park, Woon Bae ; Ramakrishnan, Prakash ; Lee, Seong‐Hun ; Lee, Jin‐Woong ; Lee, Kug‐Seung ; Ahn, Hyungju ; Liu, Tongchao ; Gim, Jihyeon ; Avdeev, Maxim ; Pyo, Myoungho ; Sohn, Jung Inn ; Amine, Khalil ; Sohn, Kee‐Sun ; Shin, Tae Joo ; Ahn, Docheon ; Lu, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4407-1ba856cd4013d2960b813a5863547587f205b241829a86075d06c1e77995671d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cathodes</topic><topic>Electric potential</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Materials science</topic><topic>Na‐ion batteries</topic><topic>O3 phase</topic><topic>P2 phase</topic><topic>phase analysis</topic><topic>Phase transitions</topic><topic>Phases</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Ternary systems</topic><topic>Transition metal oxides</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paidi, Anil K.</creatorcontrib><creatorcontrib>Park, Woon Bae</creatorcontrib><creatorcontrib>Ramakrishnan, Prakash</creatorcontrib><creatorcontrib>Lee, Seong‐Hun</creatorcontrib><creatorcontrib>Lee, Jin‐Woong</creatorcontrib><creatorcontrib>Lee, Kug‐Seung</creatorcontrib><creatorcontrib>Ahn, Hyungju</creatorcontrib><creatorcontrib>Liu, Tongchao</creatorcontrib><creatorcontrib>Gim, Jihyeon</creatorcontrib><creatorcontrib>Avdeev, Maxim</creatorcontrib><creatorcontrib>Pyo, Myoungho</creatorcontrib><creatorcontrib>Sohn, Jung Inn</creatorcontrib><creatorcontrib>Amine, Khalil</creatorcontrib><creatorcontrib>Sohn, Kee‐Sun</creatorcontrib><creatorcontrib>Shin, Tae Joo</creatorcontrib><creatorcontrib>Ahn, Docheon</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paidi, Anil K.</au><au>Park, Woon Bae</au><au>Ramakrishnan, Prakash</au><au>Lee, Seong‐Hun</au><au>Lee, Jin‐Woong</au><au>Lee, Kug‐Seung</au><au>Ahn, Hyungju</au><au>Liu, Tongchao</au><au>Gim, Jihyeon</au><au>Avdeev, Maxim</au><au>Pyo, Myoungho</au><au>Sohn, Jung Inn</au><au>Amine, Khalil</au><au>Sohn, Kee‐Sun</au><au>Shin, Tae Joo</au><au>Ahn, Docheon</au><au>Lu, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unravelling the Nature of the Intrinsic Complex Structure of Binary‐Phase Na‐Layered Oxides</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>34</volume><issue>29</issue><spage>e2202137</spage><epage>n/a</epage><pages>e2202137-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The layered sodium transition metal oxide, NaTMO2 (TM = transition metal), with a binary or ternary phases has displayed outstanding electrochemical performance as a new class of strategy cathode materials for sodium‐ion batteries (SIBs). Herein, an in‐depth phase analysis of developed Na1−xTMO2 cathode materials, Na0.76Ni0.20Fe0.40Mn0.40O2 with P2‐ and O3‐type phases (NFMO‐P2/O3) is offered. Structural visualization on an atomic scale is also provided and the following findings are unveiled: i) the existence of a mixed‐phase intergrowth layer distribution and unequal distribution of P2 and O3 phases along two different crystal plane indices and ii) a complete reversible charge/discharge process for the initial two cycles that displays a simple phase transformation, which is unprecedented. Moreover, first‐principles calculations support the evidence of the formation of a binary NFMO‐P2/O3 compound, over the proposed hypothetical monophasic structures (O3, P3, O′3, and P2 phases). As a result, the synergetic effect of the simultaneous existence of P‐ and O‐type phases with their unique structures allows an extraordinary level of capacity retention in a wide range of voltage (1.5–4.5 V). It is believed that the insightful understanding of the proposed materials can introduce new perspectives for the development of high‐voltage cathode materials for SIBs.
In‐depth phase analysis of developed Na1−xTMO2 cathode materials, NFMO with P2‐ and O3‐type phases (NFMO‐P2/O3) is offered. As a result, the synergetic effect of the simultaneous existence of P‐ and O‐type phases with their unique structures allows an extraordinary level of capacity retention in a wide range of voltage (1.5–4.5 V).</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35502520</pmid><doi>10.1002/adma.202202137</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0858-8577</orcidid><orcidid>https://orcid.org/0000000308588577</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2022-07, Vol.34 (29), p.e2202137-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_osti_scitechconnect_1871239 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Cathodes Electric potential Electrochemical analysis Electrode materials Materials science Na‐ion batteries O3 phase P2 phase phase analysis Phase transitions Phases Sodium Sodium-ion batteries Ternary systems Transition metal oxides Voltage |
title | Unravelling the Nature of the Intrinsic Complex Structure of Binary‐Phase Na‐Layered Oxides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A40%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unravelling%20the%20Nature%20of%20the%20Intrinsic%20Complex%20Structure%20of%20Binary%E2%80%90Phase%20Na%E2%80%90Layered%20Oxides&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Paidi,%20Anil%20K.&rft.date=2022-07-01&rft.volume=34&rft.issue=29&rft.spage=e2202137&rft.epage=n/a&rft.pages=e2202137-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202202137&rft_dat=%3Cproquest_osti_%3E2659228039%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2691965809&rft_id=info:pmid/35502520&rfr_iscdi=true |