Unravelling the Nature of the Intrinsic Complex Structure of Binary‐Phase Na‐Layered Oxides

The layered sodium transition metal oxide, NaTMO2 (TM = transition metal), with a binary or ternary phases has displayed outstanding electrochemical performance as a new class of strategy cathode materials for sodium‐ion batteries (SIBs). Herein, an in‐depth phase analysis of developed Na1−xTMO2 cat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2022-07, Vol.34 (29), p.e2202137-n/a
Hauptverfasser: Paidi, Anil K., Park, Woon Bae, Ramakrishnan, Prakash, Lee, Seong‐Hun, Lee, Jin‐Woong, Lee, Kug‐Seung, Ahn, Hyungju, Liu, Tongchao, Gim, Jihyeon, Avdeev, Maxim, Pyo, Myoungho, Sohn, Jung Inn, Amine, Khalil, Sohn, Kee‐Sun, Shin, Tae Joo, Ahn, Docheon, Lu, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 29
container_start_page e2202137
container_title Advanced materials (Weinheim)
container_volume 34
creator Paidi, Anil K.
Park, Woon Bae
Ramakrishnan, Prakash
Lee, Seong‐Hun
Lee, Jin‐Woong
Lee, Kug‐Seung
Ahn, Hyungju
Liu, Tongchao
Gim, Jihyeon
Avdeev, Maxim
Pyo, Myoungho
Sohn, Jung Inn
Amine, Khalil
Sohn, Kee‐Sun
Shin, Tae Joo
Ahn, Docheon
Lu, Jun
description The layered sodium transition metal oxide, NaTMO2 (TM = transition metal), with a binary or ternary phases has displayed outstanding electrochemical performance as a new class of strategy cathode materials for sodium‐ion batteries (SIBs). Herein, an in‐depth phase analysis of developed Na1−xTMO2 cathode materials, Na0.76Ni0.20Fe0.40Mn0.40O2 with P2‐ and O3‐type phases (NFMO‐P2/O3) is offered. Structural visualization on an atomic scale is also provided and the following findings are unveiled: i) the existence of a mixed‐phase intergrowth layer distribution and unequal distribution of P2 and O3 phases along two different crystal plane indices and ii) a complete reversible charge/discharge process for the initial two cycles that displays a simple phase transformation, which is unprecedented. Moreover, first‐principles calculations support the evidence of the formation of a binary NFMO‐P2/O3 compound, over the proposed hypothetical monophasic structures (O3, P3, O′3, and P2 phases). As a result, the synergetic effect of the simultaneous existence of P‐ and O‐type phases with their unique structures allows an extraordinary level of capacity retention in a wide range of voltage (1.5–4.5 V). It is believed that the insightful understanding of the proposed materials can introduce new perspectives for the development of high‐voltage cathode materials for SIBs. In‐depth phase analysis of developed Na1−xTMO2 cathode materials, NFMO with P2‐ and O3‐type phases (NFMO‐P2/O3) is offered. As a result, the synergetic effect of the simultaneous existence of P‐ and O‐type phases with their unique structures allows an extraordinary level of capacity retention in a wide range of voltage (1.5–4.5 V).
doi_str_mv 10.1002/adma.202202137
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1871239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2659228039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4407-1ba856cd4013d2960b813a5863547587f205b241829a86075d06c1e77995671d3</originalsourceid><addsrcrecordid>eNqF0c1OGzEQB3CrAkFKufaIVnDpZdOxd_11DIGWSClUajlbjtchRrveYO8CufUR-ox9kjokgMQFyZJt6Td_eTwIfcYwxADkq64aPSRA0sIF_4AGmBKclyDpDhqALGguWSn20ccYbwFAMmB7aL-gFAglMEDq2gd9b-va-ZusW9jsUnd9sFk7f7pNfBecj85k47ZZ1vYx-9WF3jyTU-d1WP378_fnQsd1bTpO9coGW2VXj66y8RPanes62sPtfoCuv53_Hl_k06vvk_FompuyBJ7jmRaUmaoEXFQkvXImcKGpYAUtORV8ToDOSIkFkVow4LQCZrDlXErKOK6KA3S8yW1j51Q0rrNmYVrvrekUFhyTQib0ZYOWob3rbexU46JJzWtv2z4qwqgkRMATPXlDb9s--NRCUhJLRgWs1XCjTGhjDHaulsE16UsUBrWej1rPR73MJxUcbWP7WWOrF_48kATkBjy42q7eiVOjsx-j1_D_fPSavQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691965809</pqid></control><display><type>article</type><title>Unravelling the Nature of the Intrinsic Complex Structure of Binary‐Phase Na‐Layered Oxides</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Paidi, Anil K. ; Park, Woon Bae ; Ramakrishnan, Prakash ; Lee, Seong‐Hun ; Lee, Jin‐Woong ; Lee, Kug‐Seung ; Ahn, Hyungju ; Liu, Tongchao ; Gim, Jihyeon ; Avdeev, Maxim ; Pyo, Myoungho ; Sohn, Jung Inn ; Amine, Khalil ; Sohn, Kee‐Sun ; Shin, Tae Joo ; Ahn, Docheon ; Lu, Jun</creator><creatorcontrib>Paidi, Anil K. ; Park, Woon Bae ; Ramakrishnan, Prakash ; Lee, Seong‐Hun ; Lee, Jin‐Woong ; Lee, Kug‐Seung ; Ahn, Hyungju ; Liu, Tongchao ; Gim, Jihyeon ; Avdeev, Maxim ; Pyo, Myoungho ; Sohn, Jung Inn ; Amine, Khalil ; Sohn, Kee‐Sun ; Shin, Tae Joo ; Ahn, Docheon ; Lu, Jun</creatorcontrib><description>The layered sodium transition metal oxide, NaTMO2 (TM = transition metal), with a binary or ternary phases has displayed outstanding electrochemical performance as a new class of strategy cathode materials for sodium‐ion batteries (SIBs). Herein, an in‐depth phase analysis of developed Na1−xTMO2 cathode materials, Na0.76Ni0.20Fe0.40Mn0.40O2 with P2‐ and O3‐type phases (NFMO‐P2/O3) is offered. Structural visualization on an atomic scale is also provided and the following findings are unveiled: i) the existence of a mixed‐phase intergrowth layer distribution and unequal distribution of P2 and O3 phases along two different crystal plane indices and ii) a complete reversible charge/discharge process for the initial two cycles that displays a simple phase transformation, which is unprecedented. Moreover, first‐principles calculations support the evidence of the formation of a binary NFMO‐P2/O3 compound, over the proposed hypothetical monophasic structures (O3, P3, O′3, and P2 phases). As a result, the synergetic effect of the simultaneous existence of P‐ and O‐type phases with their unique structures allows an extraordinary level of capacity retention in a wide range of voltage (1.5–4.5 V). It is believed that the insightful understanding of the proposed materials can introduce new perspectives for the development of high‐voltage cathode materials for SIBs. In‐depth phase analysis of developed Na1−xTMO2 cathode materials, NFMO with P2‐ and O3‐type phases (NFMO‐P2/O3) is offered. As a result, the synergetic effect of the simultaneous existence of P‐ and O‐type phases with their unique structures allows an extraordinary level of capacity retention in a wide range of voltage (1.5–4.5 V).</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202202137</identifier><identifier>PMID: 35502520</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Cathodes ; Electric potential ; Electrochemical analysis ; Electrode materials ; Materials science ; Na‐ion batteries ; O3 phase ; P2 phase ; phase analysis ; Phase transitions ; Phases ; Sodium ; Sodium-ion batteries ; Ternary systems ; Transition metal oxides ; Voltage</subject><ispartof>Advanced materials (Weinheim), 2022-07, Vol.34 (29), p.e2202137-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4407-1ba856cd4013d2960b813a5863547587f205b241829a86075d06c1e77995671d3</citedby><cites>FETCH-LOGICAL-c4407-1ba856cd4013d2960b813a5863547587f205b241829a86075d06c1e77995671d3</cites><orcidid>0000-0003-0858-8577 ; 0000000308588577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202202137$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202202137$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35502520$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1871239$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Paidi, Anil K.</creatorcontrib><creatorcontrib>Park, Woon Bae</creatorcontrib><creatorcontrib>Ramakrishnan, Prakash</creatorcontrib><creatorcontrib>Lee, Seong‐Hun</creatorcontrib><creatorcontrib>Lee, Jin‐Woong</creatorcontrib><creatorcontrib>Lee, Kug‐Seung</creatorcontrib><creatorcontrib>Ahn, Hyungju</creatorcontrib><creatorcontrib>Liu, Tongchao</creatorcontrib><creatorcontrib>Gim, Jihyeon</creatorcontrib><creatorcontrib>Avdeev, Maxim</creatorcontrib><creatorcontrib>Pyo, Myoungho</creatorcontrib><creatorcontrib>Sohn, Jung Inn</creatorcontrib><creatorcontrib>Amine, Khalil</creatorcontrib><creatorcontrib>Sohn, Kee‐Sun</creatorcontrib><creatorcontrib>Shin, Tae Joo</creatorcontrib><creatorcontrib>Ahn, Docheon</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><title>Unravelling the Nature of the Intrinsic Complex Structure of Binary‐Phase Na‐Layered Oxides</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The layered sodium transition metal oxide, NaTMO2 (TM = transition metal), with a binary or ternary phases has displayed outstanding electrochemical performance as a new class of strategy cathode materials for sodium‐ion batteries (SIBs). Herein, an in‐depth phase analysis of developed Na1−xTMO2 cathode materials, Na0.76Ni0.20Fe0.40Mn0.40O2 with P2‐ and O3‐type phases (NFMO‐P2/O3) is offered. Structural visualization on an atomic scale is also provided and the following findings are unveiled: i) the existence of a mixed‐phase intergrowth layer distribution and unequal distribution of P2 and O3 phases along two different crystal plane indices and ii) a complete reversible charge/discharge process for the initial two cycles that displays a simple phase transformation, which is unprecedented. Moreover, first‐principles calculations support the evidence of the formation of a binary NFMO‐P2/O3 compound, over the proposed hypothetical monophasic structures (O3, P3, O′3, and P2 phases). As a result, the synergetic effect of the simultaneous existence of P‐ and O‐type phases with their unique structures allows an extraordinary level of capacity retention in a wide range of voltage (1.5–4.5 V). It is believed that the insightful understanding of the proposed materials can introduce new perspectives for the development of high‐voltage cathode materials for SIBs. In‐depth phase analysis of developed Na1−xTMO2 cathode materials, NFMO with P2‐ and O3‐type phases (NFMO‐P2/O3) is offered. As a result, the synergetic effect of the simultaneous existence of P‐ and O‐type phases with their unique structures allows an extraordinary level of capacity retention in a wide range of voltage (1.5–4.5 V).</description><subject>Cathodes</subject><subject>Electric potential</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Materials science</subject><subject>Na‐ion batteries</subject><subject>O3 phase</subject><subject>P2 phase</subject><subject>phase analysis</subject><subject>Phase transitions</subject><subject>Phases</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Ternary systems</subject><subject>Transition metal oxides</subject><subject>Voltage</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqF0c1OGzEQB3CrAkFKufaIVnDpZdOxd_11DIGWSClUajlbjtchRrveYO8CufUR-ox9kjokgMQFyZJt6Td_eTwIfcYwxADkq64aPSRA0sIF_4AGmBKclyDpDhqALGguWSn20ccYbwFAMmB7aL-gFAglMEDq2gd9b-va-ZusW9jsUnd9sFk7f7pNfBecj85k47ZZ1vYx-9WF3jyTU-d1WP378_fnQsd1bTpO9coGW2VXj66y8RPanes62sPtfoCuv53_Hl_k06vvk_FompuyBJ7jmRaUmaoEXFQkvXImcKGpYAUtORV8ToDOSIkFkVow4LQCZrDlXErKOK6KA3S8yW1j51Q0rrNmYVrvrekUFhyTQib0ZYOWob3rbexU46JJzWtv2z4qwqgkRMATPXlDb9s--NRCUhJLRgWs1XCjTGhjDHaulsE16UsUBrWej1rPR73MJxUcbWP7WWOrF_48kATkBjy42q7eiVOjsx-j1_D_fPSavQ</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Paidi, Anil K.</creator><creator>Park, Woon Bae</creator><creator>Ramakrishnan, Prakash</creator><creator>Lee, Seong‐Hun</creator><creator>Lee, Jin‐Woong</creator><creator>Lee, Kug‐Seung</creator><creator>Ahn, Hyungju</creator><creator>Liu, Tongchao</creator><creator>Gim, Jihyeon</creator><creator>Avdeev, Maxim</creator><creator>Pyo, Myoungho</creator><creator>Sohn, Jung Inn</creator><creator>Amine, Khalil</creator><creator>Sohn, Kee‐Sun</creator><creator>Shin, Tae Joo</creator><creator>Ahn, Docheon</creator><creator>Lu, Jun</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0858-8577</orcidid><orcidid>https://orcid.org/0000000308588577</orcidid></search><sort><creationdate>20220701</creationdate><title>Unravelling the Nature of the Intrinsic Complex Structure of Binary‐Phase Na‐Layered Oxides</title><author>Paidi, Anil K. ; Park, Woon Bae ; Ramakrishnan, Prakash ; Lee, Seong‐Hun ; Lee, Jin‐Woong ; Lee, Kug‐Seung ; Ahn, Hyungju ; Liu, Tongchao ; Gim, Jihyeon ; Avdeev, Maxim ; Pyo, Myoungho ; Sohn, Jung Inn ; Amine, Khalil ; Sohn, Kee‐Sun ; Shin, Tae Joo ; Ahn, Docheon ; Lu, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4407-1ba856cd4013d2960b813a5863547587f205b241829a86075d06c1e77995671d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cathodes</topic><topic>Electric potential</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Materials science</topic><topic>Na‐ion batteries</topic><topic>O3 phase</topic><topic>P2 phase</topic><topic>phase analysis</topic><topic>Phase transitions</topic><topic>Phases</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Ternary systems</topic><topic>Transition metal oxides</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paidi, Anil K.</creatorcontrib><creatorcontrib>Park, Woon Bae</creatorcontrib><creatorcontrib>Ramakrishnan, Prakash</creatorcontrib><creatorcontrib>Lee, Seong‐Hun</creatorcontrib><creatorcontrib>Lee, Jin‐Woong</creatorcontrib><creatorcontrib>Lee, Kug‐Seung</creatorcontrib><creatorcontrib>Ahn, Hyungju</creatorcontrib><creatorcontrib>Liu, Tongchao</creatorcontrib><creatorcontrib>Gim, Jihyeon</creatorcontrib><creatorcontrib>Avdeev, Maxim</creatorcontrib><creatorcontrib>Pyo, Myoungho</creatorcontrib><creatorcontrib>Sohn, Jung Inn</creatorcontrib><creatorcontrib>Amine, Khalil</creatorcontrib><creatorcontrib>Sohn, Kee‐Sun</creatorcontrib><creatorcontrib>Shin, Tae Joo</creatorcontrib><creatorcontrib>Ahn, Docheon</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paidi, Anil K.</au><au>Park, Woon Bae</au><au>Ramakrishnan, Prakash</au><au>Lee, Seong‐Hun</au><au>Lee, Jin‐Woong</au><au>Lee, Kug‐Seung</au><au>Ahn, Hyungju</au><au>Liu, Tongchao</au><au>Gim, Jihyeon</au><au>Avdeev, Maxim</au><au>Pyo, Myoungho</au><au>Sohn, Jung Inn</au><au>Amine, Khalil</au><au>Sohn, Kee‐Sun</au><au>Shin, Tae Joo</au><au>Ahn, Docheon</au><au>Lu, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unravelling the Nature of the Intrinsic Complex Structure of Binary‐Phase Na‐Layered Oxides</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>34</volume><issue>29</issue><spage>e2202137</spage><epage>n/a</epage><pages>e2202137-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The layered sodium transition metal oxide, NaTMO2 (TM = transition metal), with a binary or ternary phases has displayed outstanding electrochemical performance as a new class of strategy cathode materials for sodium‐ion batteries (SIBs). Herein, an in‐depth phase analysis of developed Na1−xTMO2 cathode materials, Na0.76Ni0.20Fe0.40Mn0.40O2 with P2‐ and O3‐type phases (NFMO‐P2/O3) is offered. Structural visualization on an atomic scale is also provided and the following findings are unveiled: i) the existence of a mixed‐phase intergrowth layer distribution and unequal distribution of P2 and O3 phases along two different crystal plane indices and ii) a complete reversible charge/discharge process for the initial two cycles that displays a simple phase transformation, which is unprecedented. Moreover, first‐principles calculations support the evidence of the formation of a binary NFMO‐P2/O3 compound, over the proposed hypothetical monophasic structures (O3, P3, O′3, and P2 phases). As a result, the synergetic effect of the simultaneous existence of P‐ and O‐type phases with their unique structures allows an extraordinary level of capacity retention in a wide range of voltage (1.5–4.5 V). It is believed that the insightful understanding of the proposed materials can introduce new perspectives for the development of high‐voltage cathode materials for SIBs. In‐depth phase analysis of developed Na1−xTMO2 cathode materials, NFMO with P2‐ and O3‐type phases (NFMO‐P2/O3) is offered. As a result, the synergetic effect of the simultaneous existence of P‐ and O‐type phases with their unique structures allows an extraordinary level of capacity retention in a wide range of voltage (1.5–4.5 V).</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35502520</pmid><doi>10.1002/adma.202202137</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0858-8577</orcidid><orcidid>https://orcid.org/0000000308588577</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2022-07, Vol.34 (29), p.e2202137-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_osti_scitechconnect_1871239
source Wiley Online Library Journals Frontfile Complete
subjects Cathodes
Electric potential
Electrochemical analysis
Electrode materials
Materials science
Na‐ion batteries
O3 phase
P2 phase
phase analysis
Phase transitions
Phases
Sodium
Sodium-ion batteries
Ternary systems
Transition metal oxides
Voltage
title Unravelling the Nature of the Intrinsic Complex Structure of Binary‐Phase Na‐Layered Oxides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A40%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unravelling%20the%20Nature%20of%20the%20Intrinsic%20Complex%20Structure%20of%20Binary%E2%80%90Phase%20Na%E2%80%90Layered%20Oxides&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Paidi,%20Anil%20K.&rft.date=2022-07-01&rft.volume=34&rft.issue=29&rft.spage=e2202137&rft.epage=n/a&rft.pages=e2202137-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202202137&rft_dat=%3Cproquest_osti_%3E2659228039%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2691965809&rft_id=info:pmid/35502520&rfr_iscdi=true