Spatiotemporal evolution of melt ponds on Arctic sea ice
Melt ponds on sea ice play an important role in the Arctic climate system. Their presence alters the partitioning of solar radiation: decreasing reflection, increasing absorption and transmission to the ice and ocean, and enhancing melt. The spatiotemporal properties of melt ponds thus modify ice al...
Gespeichert in:
Veröffentlicht in: | Elementa (Washington, D.C.) D.C.), 2022-05, Vol.10 (1) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Elementa (Washington, D.C.) |
container_volume | 10 |
creator | Webster, Melinda A. Holland, Marika Wright, Nicholas C. Hendricks, Stefan Hutter, Nils Itkin, Polona Light, Bonnie Linhardt, Felix Perovich, Donald K. Raphael, Ian A. Smith, Madison M. von Albedyll, Luisa Zhang, Jinlun |
description | Melt ponds on sea ice play an important role in the Arctic climate system. Their presence alters the partitioning of solar radiation: decreasing reflection, increasing absorption and transmission to the ice and ocean, and enhancing melt. The spatiotemporal properties of melt ponds thus modify ice albedo feedbacks and the mass balance of Arctic sea ice. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition presented a valuable opportunity to investigate the seasonal evolution of melt ponds through a rich array of atmosphere-ice-ocean measurements across spatial and temporal scales. In this study, we characterize the seasonal behavior and variability in the snow, surface scattering layer, and melt ponds from spring melt to autumn freeze-up using in situ surveys and auxiliary observations. We compare the results to satellite retrievals and output from two models: the Community Earth System Model (CESM2) and the Marginal Ice Zone Modeling and Assimilation System (MIZMAS). During the melt season, the maximum pond coverage and depth were 21% and 22 ± 13 cm, respectively, with distribution and depth corresponding to surface roughness and ice thickness. Compared to observations, both models overestimate melt pond coverage in summer, with maximum values of approximately 41% (MIZMAS) and 51% (CESM2). This overestimation has important implications for accurately simulating albedo feedbacks. During the observed freeze-up, weather events, including rain on snow, caused high-frequency variability in snow depth, while pond coverage and depth remained relatively constant until continuous freezing ensued. Both models accurately simulate the abrupt cessation of melt ponds during freeze-up, but the dates of freeze-up differ. MIZMAS accurately simulates the observed date of freeze-up, while CESM2 simulates freeze-up one-to-two weeks earlier. This work demonstrates areas that warrant future observation-model synthesis for improving the representation of sea-ice processes and properties, which can aid accurate simulations of albedo feedbacks in a warming climate. |
doi_str_mv | 10.1525/elementa.2021.000072 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1871197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1525_elementa_2021_000072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1692-ac24c4c794710bdf68ee9924ae5a05f5d1771809ecc92579d31e7bdfd460b413</originalsourceid><addsrcrecordid>eNpNkE1LxDAURYMoOIzzD1wE9x3z0qRplsPgFwy4cPYh8_qKlbYpTRT892aogm9zH5fDXRzGbkFsQUt9Tz0NNCa_lULCVuQz8oKtZCl1AUJWl__-a7aJ8SMjkCEl5YrVb5NPXUg0TGH2Paev0H_mYuSh5QP1iU9hbCLPxW7G1CGP5HmHdMOuWt9H2vzmmh0fH4775-Lw-vSy3x0KhMrKwqNUqNBYZUCcmraqiayVypP2Qre6AWOgFpYQrdTGNiWQyVyjKnFSUK7Z3TIbYupcxC4RvmMYR8LkoDYA1mRILRDOIcaZWjfN3eDnbwfCnSW5P0nuLMktksofVPFbgw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spatiotemporal evolution of melt ponds on Arctic sea ice</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Webster, Melinda A. ; Holland, Marika ; Wright, Nicholas C. ; Hendricks, Stefan ; Hutter, Nils ; Itkin, Polona ; Light, Bonnie ; Linhardt, Felix ; Perovich, Donald K. ; Raphael, Ian A. ; Smith, Madison M. ; von Albedyll, Luisa ; Zhang, Jinlun</creator><creatorcontrib>Webster, Melinda A. ; Holland, Marika ; Wright, Nicholas C. ; Hendricks, Stefan ; Hutter, Nils ; Itkin, Polona ; Light, Bonnie ; Linhardt, Felix ; Perovich, Donald K. ; Raphael, Ian A. ; Smith, Madison M. ; von Albedyll, Luisa ; Zhang, Jinlun ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Atmospheric Radiation Measurement (ARM) Data Center</creatorcontrib><description>Melt ponds on sea ice play an important role in the Arctic climate system. Their presence alters the partitioning of solar radiation: decreasing reflection, increasing absorption and transmission to the ice and ocean, and enhancing melt. The spatiotemporal properties of melt ponds thus modify ice albedo feedbacks and the mass balance of Arctic sea ice. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition presented a valuable opportunity to investigate the seasonal evolution of melt ponds through a rich array of atmosphere-ice-ocean measurements across spatial and temporal scales. In this study, we characterize the seasonal behavior and variability in the snow, surface scattering layer, and melt ponds from spring melt to autumn freeze-up using in situ surveys and auxiliary observations. We compare the results to satellite retrievals and output from two models: the Community Earth System Model (CESM2) and the Marginal Ice Zone Modeling and Assimilation System (MIZMAS). During the melt season, the maximum pond coverage and depth were 21% and 22 ± 13 cm, respectively, with distribution and depth corresponding to surface roughness and ice thickness. Compared to observations, both models overestimate melt pond coverage in summer, with maximum values of approximately 41% (MIZMAS) and 51% (CESM2). This overestimation has important implications for accurately simulating albedo feedbacks. During the observed freeze-up, weather events, including rain on snow, caused high-frequency variability in snow depth, while pond coverage and depth remained relatively constant until continuous freezing ensued. Both models accurately simulate the abrupt cessation of melt ponds during freeze-up, but the dates of freeze-up differ. MIZMAS accurately simulates the observed date of freeze-up, while CESM2 simulates freeze-up one-to-two weeks earlier. This work demonstrates areas that warrant future observation-model synthesis for improving the representation of sea-ice processes and properties, which can aid accurate simulations of albedo feedbacks in a warming climate.</description><identifier>ISSN: 2325-1026</identifier><identifier>EISSN: 2325-1026</identifier><identifier>DOI: 10.1525/elementa.2021.000072</identifier><language>eng</language><publisher>United States: University of California Press</publisher><subject>Arctic ; ENVIRONMENTAL SCIENCES ; Melt ponds ; Sea ice ; Snow</subject><ispartof>Elementa (Washington, D.C.), 2022-05, Vol.10 (1)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1692-ac24c4c794710bdf68ee9924ae5a05f5d1771809ecc92579d31e7bdfd460b413</citedby><cites>FETCH-LOGICAL-c1692-ac24c4c794710bdf68ee9924ae5a05f5d1771809ecc92579d31e7bdfd460b413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1871197$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Webster, Melinda A.</creatorcontrib><creatorcontrib>Holland, Marika</creatorcontrib><creatorcontrib>Wright, Nicholas C.</creatorcontrib><creatorcontrib>Hendricks, Stefan</creatorcontrib><creatorcontrib>Hutter, Nils</creatorcontrib><creatorcontrib>Itkin, Polona</creatorcontrib><creatorcontrib>Light, Bonnie</creatorcontrib><creatorcontrib>Linhardt, Felix</creatorcontrib><creatorcontrib>Perovich, Donald K.</creatorcontrib><creatorcontrib>Raphael, Ian A.</creatorcontrib><creatorcontrib>Smith, Madison M.</creatorcontrib><creatorcontrib>von Albedyll, Luisa</creatorcontrib><creatorcontrib>Zhang, Jinlun</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Atmospheric Radiation Measurement (ARM) Data Center</creatorcontrib><title>Spatiotemporal evolution of melt ponds on Arctic sea ice</title><title>Elementa (Washington, D.C.)</title><description>Melt ponds on sea ice play an important role in the Arctic climate system. Their presence alters the partitioning of solar radiation: decreasing reflection, increasing absorption and transmission to the ice and ocean, and enhancing melt. The spatiotemporal properties of melt ponds thus modify ice albedo feedbacks and the mass balance of Arctic sea ice. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition presented a valuable opportunity to investigate the seasonal evolution of melt ponds through a rich array of atmosphere-ice-ocean measurements across spatial and temporal scales. In this study, we characterize the seasonal behavior and variability in the snow, surface scattering layer, and melt ponds from spring melt to autumn freeze-up using in situ surveys and auxiliary observations. We compare the results to satellite retrievals and output from two models: the Community Earth System Model (CESM2) and the Marginal Ice Zone Modeling and Assimilation System (MIZMAS). During the melt season, the maximum pond coverage and depth were 21% and 22 ± 13 cm, respectively, with distribution and depth corresponding to surface roughness and ice thickness. Compared to observations, both models overestimate melt pond coverage in summer, with maximum values of approximately 41% (MIZMAS) and 51% (CESM2). This overestimation has important implications for accurately simulating albedo feedbacks. During the observed freeze-up, weather events, including rain on snow, caused high-frequency variability in snow depth, while pond coverage and depth remained relatively constant until continuous freezing ensued. Both models accurately simulate the abrupt cessation of melt ponds during freeze-up, but the dates of freeze-up differ. MIZMAS accurately simulates the observed date of freeze-up, while CESM2 simulates freeze-up one-to-two weeks earlier. This work demonstrates areas that warrant future observation-model synthesis for improving the representation of sea-ice processes and properties, which can aid accurate simulations of albedo feedbacks in a warming climate.</description><subject>Arctic</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Melt ponds</subject><subject>Sea ice</subject><subject>Snow</subject><issn>2325-1026</issn><issn>2325-1026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LxDAURYMoOIzzD1wE9x3z0qRplsPgFwy4cPYh8_qKlbYpTRT892aogm9zH5fDXRzGbkFsQUt9Tz0NNCa_lULCVuQz8oKtZCl1AUJWl__-a7aJ8SMjkCEl5YrVb5NPXUg0TGH2Paev0H_mYuSh5QP1iU9hbCLPxW7G1CGP5HmHdMOuWt9H2vzmmh0fH4775-Lw-vSy3x0KhMrKwqNUqNBYZUCcmraqiayVypP2Qre6AWOgFpYQrdTGNiWQyVyjKnFSUK7Z3TIbYupcxC4RvmMYR8LkoDYA1mRILRDOIcaZWjfN3eDnbwfCnSW5P0nuLMktksofVPFbgw</recordid><startdate>20220511</startdate><enddate>20220511</enddate><creator>Webster, Melinda A.</creator><creator>Holland, Marika</creator><creator>Wright, Nicholas C.</creator><creator>Hendricks, Stefan</creator><creator>Hutter, Nils</creator><creator>Itkin, Polona</creator><creator>Light, Bonnie</creator><creator>Linhardt, Felix</creator><creator>Perovich, Donald K.</creator><creator>Raphael, Ian A.</creator><creator>Smith, Madison M.</creator><creator>von Albedyll, Luisa</creator><creator>Zhang, Jinlun</creator><general>University of California Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20220511</creationdate><title>Spatiotemporal evolution of melt ponds on Arctic sea ice</title><author>Webster, Melinda A. ; Holland, Marika ; Wright, Nicholas C. ; Hendricks, Stefan ; Hutter, Nils ; Itkin, Polona ; Light, Bonnie ; Linhardt, Felix ; Perovich, Donald K. ; Raphael, Ian A. ; Smith, Madison M. ; von Albedyll, Luisa ; Zhang, Jinlun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1692-ac24c4c794710bdf68ee9924ae5a05f5d1771809ecc92579d31e7bdfd460b413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arctic</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Melt ponds</topic><topic>Sea ice</topic><topic>Snow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Webster, Melinda A.</creatorcontrib><creatorcontrib>Holland, Marika</creatorcontrib><creatorcontrib>Wright, Nicholas C.</creatorcontrib><creatorcontrib>Hendricks, Stefan</creatorcontrib><creatorcontrib>Hutter, Nils</creatorcontrib><creatorcontrib>Itkin, Polona</creatorcontrib><creatorcontrib>Light, Bonnie</creatorcontrib><creatorcontrib>Linhardt, Felix</creatorcontrib><creatorcontrib>Perovich, Donald K.</creatorcontrib><creatorcontrib>Raphael, Ian A.</creatorcontrib><creatorcontrib>Smith, Madison M.</creatorcontrib><creatorcontrib>von Albedyll, Luisa</creatorcontrib><creatorcontrib>Zhang, Jinlun</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Atmospheric Radiation Measurement (ARM) Data Center</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Elementa (Washington, D.C.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Webster, Melinda A.</au><au>Holland, Marika</au><au>Wright, Nicholas C.</au><au>Hendricks, Stefan</au><au>Hutter, Nils</au><au>Itkin, Polona</au><au>Light, Bonnie</au><au>Linhardt, Felix</au><au>Perovich, Donald K.</au><au>Raphael, Ian A.</au><au>Smith, Madison M.</au><au>von Albedyll, Luisa</au><au>Zhang, Jinlun</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Atmospheric Radiation Measurement (ARM) Data Center</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatiotemporal evolution of melt ponds on Arctic sea ice</atitle><jtitle>Elementa (Washington, D.C.)</jtitle><date>2022-05-11</date><risdate>2022</risdate><volume>10</volume><issue>1</issue><issn>2325-1026</issn><eissn>2325-1026</eissn><abstract>Melt ponds on sea ice play an important role in the Arctic climate system. Their presence alters the partitioning of solar radiation: decreasing reflection, increasing absorption and transmission to the ice and ocean, and enhancing melt. The spatiotemporal properties of melt ponds thus modify ice albedo feedbacks and the mass balance of Arctic sea ice. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition presented a valuable opportunity to investigate the seasonal evolution of melt ponds through a rich array of atmosphere-ice-ocean measurements across spatial and temporal scales. In this study, we characterize the seasonal behavior and variability in the snow, surface scattering layer, and melt ponds from spring melt to autumn freeze-up using in situ surveys and auxiliary observations. We compare the results to satellite retrievals and output from two models: the Community Earth System Model (CESM2) and the Marginal Ice Zone Modeling and Assimilation System (MIZMAS). During the melt season, the maximum pond coverage and depth were 21% and 22 ± 13 cm, respectively, with distribution and depth corresponding to surface roughness and ice thickness. Compared to observations, both models overestimate melt pond coverage in summer, with maximum values of approximately 41% (MIZMAS) and 51% (CESM2). This overestimation has important implications for accurately simulating albedo feedbacks. During the observed freeze-up, weather events, including rain on snow, caused high-frequency variability in snow depth, while pond coverage and depth remained relatively constant until continuous freezing ensued. Both models accurately simulate the abrupt cessation of melt ponds during freeze-up, but the dates of freeze-up differ. MIZMAS accurately simulates the observed date of freeze-up, while CESM2 simulates freeze-up one-to-two weeks earlier. This work demonstrates areas that warrant future observation-model synthesis for improving the representation of sea-ice processes and properties, which can aid accurate simulations of albedo feedbacks in a warming climate.</abstract><cop>United States</cop><pub>University of California Press</pub><doi>10.1525/elementa.2021.000072</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2325-1026 |
ispartof | Elementa (Washington, D.C.), 2022-05, Vol.10 (1) |
issn | 2325-1026 2325-1026 |
language | eng |
recordid | cdi_osti_scitechconnect_1871197 |
source | EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Arctic ENVIRONMENTAL SCIENCES Melt ponds Sea ice Snow |
title | Spatiotemporal evolution of melt ponds on Arctic sea ice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A45%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatiotemporal%20evolution%20of%20melt%20ponds%20on%20Arctic%20sea%20ice&rft.jtitle=Elementa%20(Washington,%20D.C.)&rft.au=Webster,%20Melinda%20A.&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Atmospheric%20Radiation%20Measurement%20(ARM)%20Data%20Center&rft.date=2022-05-11&rft.volume=10&rft.issue=1&rft.issn=2325-1026&rft.eissn=2325-1026&rft_id=info:doi/10.1525/elementa.2021.000072&rft_dat=%3Ccrossref_osti_%3E10_1525_elementa_2021_000072%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |