Spatiotemporal evolution of melt ponds on Arctic sea ice

Melt ponds on sea ice play an important role in the Arctic climate system. Their presence alters the partitioning of solar radiation: decreasing reflection, increasing absorption and transmission to the ice and ocean, and enhancing melt. The spatiotemporal properties of melt ponds thus modify ice al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Elementa (Washington, D.C.) D.C.), 2022-05, Vol.10 (1)
Hauptverfasser: Webster, Melinda A., Holland, Marika, Wright, Nicholas C., Hendricks, Stefan, Hutter, Nils, Itkin, Polona, Light, Bonnie, Linhardt, Felix, Perovich, Donald K., Raphael, Ian A., Smith, Madison M., von Albedyll, Luisa, Zhang, Jinlun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Elementa (Washington, D.C.)
container_volume 10
creator Webster, Melinda A.
Holland, Marika
Wright, Nicholas C.
Hendricks, Stefan
Hutter, Nils
Itkin, Polona
Light, Bonnie
Linhardt, Felix
Perovich, Donald K.
Raphael, Ian A.
Smith, Madison M.
von Albedyll, Luisa
Zhang, Jinlun
description Melt ponds on sea ice play an important role in the Arctic climate system. Their presence alters the partitioning of solar radiation: decreasing reflection, increasing absorption and transmission to the ice and ocean, and enhancing melt. The spatiotemporal properties of melt ponds thus modify ice albedo feedbacks and the mass balance of Arctic sea ice. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition presented a valuable opportunity to investigate the seasonal evolution of melt ponds through a rich array of atmosphere-ice-ocean measurements across spatial and temporal scales. In this study, we characterize the seasonal behavior and variability in the snow, surface scattering layer, and melt ponds from spring melt to autumn freeze-up using in situ surveys and auxiliary observations. We compare the results to satellite retrievals and output from two models: the Community Earth System Model (CESM2) and the Marginal Ice Zone Modeling and Assimilation System (MIZMAS). During the melt season, the maximum pond coverage and depth were 21% and 22 ± 13 cm, respectively, with distribution and depth corresponding to surface roughness and ice thickness. Compared to observations, both models overestimate melt pond coverage in summer, with maximum values of approximately 41% (MIZMAS) and 51% (CESM2). This overestimation has important implications for accurately simulating albedo feedbacks. During the observed freeze-up, weather events, including rain on snow, caused high-frequency variability in snow depth, while pond coverage and depth remained relatively constant until continuous freezing ensued. Both models accurately simulate the abrupt cessation of melt ponds during freeze-up, but the dates of freeze-up differ. MIZMAS accurately simulates the observed date of freeze-up, while CESM2 simulates freeze-up one-to-two weeks earlier. This work demonstrates areas that warrant future observation-model synthesis for improving the representation of sea-ice processes and properties, which can aid accurate simulations of albedo feedbacks in a warming climate.
doi_str_mv 10.1525/elementa.2021.000072
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1871197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1525_elementa_2021_000072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1692-ac24c4c794710bdf68ee9924ae5a05f5d1771809ecc92579d31e7bdfd460b413</originalsourceid><addsrcrecordid>eNpNkE1LxDAURYMoOIzzD1wE9x3z0qRplsPgFwy4cPYh8_qKlbYpTRT892aogm9zH5fDXRzGbkFsQUt9Tz0NNCa_lULCVuQz8oKtZCl1AUJWl__-a7aJ8SMjkCEl5YrVb5NPXUg0TGH2Paev0H_mYuSh5QP1iU9hbCLPxW7G1CGP5HmHdMOuWt9H2vzmmh0fH4775-Lw-vSy3x0KhMrKwqNUqNBYZUCcmraqiayVypP2Qre6AWOgFpYQrdTGNiWQyVyjKnFSUK7Z3TIbYupcxC4RvmMYR8LkoDYA1mRILRDOIcaZWjfN3eDnbwfCnSW5P0nuLMktksofVPFbgw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spatiotemporal evolution of melt ponds on Arctic sea ice</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Webster, Melinda A. ; Holland, Marika ; Wright, Nicholas C. ; Hendricks, Stefan ; Hutter, Nils ; Itkin, Polona ; Light, Bonnie ; Linhardt, Felix ; Perovich, Donald K. ; Raphael, Ian A. ; Smith, Madison M. ; von Albedyll, Luisa ; Zhang, Jinlun</creator><creatorcontrib>Webster, Melinda A. ; Holland, Marika ; Wright, Nicholas C. ; Hendricks, Stefan ; Hutter, Nils ; Itkin, Polona ; Light, Bonnie ; Linhardt, Felix ; Perovich, Donald K. ; Raphael, Ian A. ; Smith, Madison M. ; von Albedyll, Luisa ; Zhang, Jinlun ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Atmospheric Radiation Measurement (ARM) Data Center</creatorcontrib><description>Melt ponds on sea ice play an important role in the Arctic climate system. Their presence alters the partitioning of solar radiation: decreasing reflection, increasing absorption and transmission to the ice and ocean, and enhancing melt. The spatiotemporal properties of melt ponds thus modify ice albedo feedbacks and the mass balance of Arctic sea ice. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition presented a valuable opportunity to investigate the seasonal evolution of melt ponds through a rich array of atmosphere-ice-ocean measurements across spatial and temporal scales. In this study, we characterize the seasonal behavior and variability in the snow, surface scattering layer, and melt ponds from spring melt to autumn freeze-up using in situ surveys and auxiliary observations. We compare the results to satellite retrievals and output from two models: the Community Earth System Model (CESM2) and the Marginal Ice Zone Modeling and Assimilation System (MIZMAS). During the melt season, the maximum pond coverage and depth were 21% and 22 ± 13 cm, respectively, with distribution and depth corresponding to surface roughness and ice thickness. Compared to observations, both models overestimate melt pond coverage in summer, with maximum values of approximately 41% (MIZMAS) and 51% (CESM2). This overestimation has important implications for accurately simulating albedo feedbacks. During the observed freeze-up, weather events, including rain on snow, caused high-frequency variability in snow depth, while pond coverage and depth remained relatively constant until continuous freezing ensued. Both models accurately simulate the abrupt cessation of melt ponds during freeze-up, but the dates of freeze-up differ. MIZMAS accurately simulates the observed date of freeze-up, while CESM2 simulates freeze-up one-to-two weeks earlier. This work demonstrates areas that warrant future observation-model synthesis for improving the representation of sea-ice processes and properties, which can aid accurate simulations of albedo feedbacks in a warming climate.</description><identifier>ISSN: 2325-1026</identifier><identifier>EISSN: 2325-1026</identifier><identifier>DOI: 10.1525/elementa.2021.000072</identifier><language>eng</language><publisher>United States: University of California Press</publisher><subject>Arctic ; ENVIRONMENTAL SCIENCES ; Melt ponds ; Sea ice ; Snow</subject><ispartof>Elementa (Washington, D.C.), 2022-05, Vol.10 (1)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1692-ac24c4c794710bdf68ee9924ae5a05f5d1771809ecc92579d31e7bdfd460b413</citedby><cites>FETCH-LOGICAL-c1692-ac24c4c794710bdf68ee9924ae5a05f5d1771809ecc92579d31e7bdfd460b413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1871197$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Webster, Melinda A.</creatorcontrib><creatorcontrib>Holland, Marika</creatorcontrib><creatorcontrib>Wright, Nicholas C.</creatorcontrib><creatorcontrib>Hendricks, Stefan</creatorcontrib><creatorcontrib>Hutter, Nils</creatorcontrib><creatorcontrib>Itkin, Polona</creatorcontrib><creatorcontrib>Light, Bonnie</creatorcontrib><creatorcontrib>Linhardt, Felix</creatorcontrib><creatorcontrib>Perovich, Donald K.</creatorcontrib><creatorcontrib>Raphael, Ian A.</creatorcontrib><creatorcontrib>Smith, Madison M.</creatorcontrib><creatorcontrib>von Albedyll, Luisa</creatorcontrib><creatorcontrib>Zhang, Jinlun</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Atmospheric Radiation Measurement (ARM) Data Center</creatorcontrib><title>Spatiotemporal evolution of melt ponds on Arctic sea ice</title><title>Elementa (Washington, D.C.)</title><description>Melt ponds on sea ice play an important role in the Arctic climate system. Their presence alters the partitioning of solar radiation: decreasing reflection, increasing absorption and transmission to the ice and ocean, and enhancing melt. The spatiotemporal properties of melt ponds thus modify ice albedo feedbacks and the mass balance of Arctic sea ice. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition presented a valuable opportunity to investigate the seasonal evolution of melt ponds through a rich array of atmosphere-ice-ocean measurements across spatial and temporal scales. In this study, we characterize the seasonal behavior and variability in the snow, surface scattering layer, and melt ponds from spring melt to autumn freeze-up using in situ surveys and auxiliary observations. We compare the results to satellite retrievals and output from two models: the Community Earth System Model (CESM2) and the Marginal Ice Zone Modeling and Assimilation System (MIZMAS). During the melt season, the maximum pond coverage and depth were 21% and 22 ± 13 cm, respectively, with distribution and depth corresponding to surface roughness and ice thickness. Compared to observations, both models overestimate melt pond coverage in summer, with maximum values of approximately 41% (MIZMAS) and 51% (CESM2). This overestimation has important implications for accurately simulating albedo feedbacks. During the observed freeze-up, weather events, including rain on snow, caused high-frequency variability in snow depth, while pond coverage and depth remained relatively constant until continuous freezing ensued. Both models accurately simulate the abrupt cessation of melt ponds during freeze-up, but the dates of freeze-up differ. MIZMAS accurately simulates the observed date of freeze-up, while CESM2 simulates freeze-up one-to-two weeks earlier. This work demonstrates areas that warrant future observation-model synthesis for improving the representation of sea-ice processes and properties, which can aid accurate simulations of albedo feedbacks in a warming climate.</description><subject>Arctic</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Melt ponds</subject><subject>Sea ice</subject><subject>Snow</subject><issn>2325-1026</issn><issn>2325-1026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LxDAURYMoOIzzD1wE9x3z0qRplsPgFwy4cPYh8_qKlbYpTRT892aogm9zH5fDXRzGbkFsQUt9Tz0NNCa_lULCVuQz8oKtZCl1AUJWl__-a7aJ8SMjkCEl5YrVb5NPXUg0TGH2Paev0H_mYuSh5QP1iU9hbCLPxW7G1CGP5HmHdMOuWt9H2vzmmh0fH4775-Lw-vSy3x0KhMrKwqNUqNBYZUCcmraqiayVypP2Qre6AWOgFpYQrdTGNiWQyVyjKnFSUK7Z3TIbYupcxC4RvmMYR8LkoDYA1mRILRDOIcaZWjfN3eDnbwfCnSW5P0nuLMktksofVPFbgw</recordid><startdate>20220511</startdate><enddate>20220511</enddate><creator>Webster, Melinda A.</creator><creator>Holland, Marika</creator><creator>Wright, Nicholas C.</creator><creator>Hendricks, Stefan</creator><creator>Hutter, Nils</creator><creator>Itkin, Polona</creator><creator>Light, Bonnie</creator><creator>Linhardt, Felix</creator><creator>Perovich, Donald K.</creator><creator>Raphael, Ian A.</creator><creator>Smith, Madison M.</creator><creator>von Albedyll, Luisa</creator><creator>Zhang, Jinlun</creator><general>University of California Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20220511</creationdate><title>Spatiotemporal evolution of melt ponds on Arctic sea ice</title><author>Webster, Melinda A. ; Holland, Marika ; Wright, Nicholas C. ; Hendricks, Stefan ; Hutter, Nils ; Itkin, Polona ; Light, Bonnie ; Linhardt, Felix ; Perovich, Donald K. ; Raphael, Ian A. ; Smith, Madison M. ; von Albedyll, Luisa ; Zhang, Jinlun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1692-ac24c4c794710bdf68ee9924ae5a05f5d1771809ecc92579d31e7bdfd460b413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arctic</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Melt ponds</topic><topic>Sea ice</topic><topic>Snow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Webster, Melinda A.</creatorcontrib><creatorcontrib>Holland, Marika</creatorcontrib><creatorcontrib>Wright, Nicholas C.</creatorcontrib><creatorcontrib>Hendricks, Stefan</creatorcontrib><creatorcontrib>Hutter, Nils</creatorcontrib><creatorcontrib>Itkin, Polona</creatorcontrib><creatorcontrib>Light, Bonnie</creatorcontrib><creatorcontrib>Linhardt, Felix</creatorcontrib><creatorcontrib>Perovich, Donald K.</creatorcontrib><creatorcontrib>Raphael, Ian A.</creatorcontrib><creatorcontrib>Smith, Madison M.</creatorcontrib><creatorcontrib>von Albedyll, Luisa</creatorcontrib><creatorcontrib>Zhang, Jinlun</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Atmospheric Radiation Measurement (ARM) Data Center</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Elementa (Washington, D.C.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Webster, Melinda A.</au><au>Holland, Marika</au><au>Wright, Nicholas C.</au><au>Hendricks, Stefan</au><au>Hutter, Nils</au><au>Itkin, Polona</au><au>Light, Bonnie</au><au>Linhardt, Felix</au><au>Perovich, Donald K.</au><au>Raphael, Ian A.</au><au>Smith, Madison M.</au><au>von Albedyll, Luisa</au><au>Zhang, Jinlun</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Atmospheric Radiation Measurement (ARM) Data Center</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatiotemporal evolution of melt ponds on Arctic sea ice</atitle><jtitle>Elementa (Washington, D.C.)</jtitle><date>2022-05-11</date><risdate>2022</risdate><volume>10</volume><issue>1</issue><issn>2325-1026</issn><eissn>2325-1026</eissn><abstract>Melt ponds on sea ice play an important role in the Arctic climate system. Their presence alters the partitioning of solar radiation: decreasing reflection, increasing absorption and transmission to the ice and ocean, and enhancing melt. The spatiotemporal properties of melt ponds thus modify ice albedo feedbacks and the mass balance of Arctic sea ice. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition presented a valuable opportunity to investigate the seasonal evolution of melt ponds through a rich array of atmosphere-ice-ocean measurements across spatial and temporal scales. In this study, we characterize the seasonal behavior and variability in the snow, surface scattering layer, and melt ponds from spring melt to autumn freeze-up using in situ surveys and auxiliary observations. We compare the results to satellite retrievals and output from two models: the Community Earth System Model (CESM2) and the Marginal Ice Zone Modeling and Assimilation System (MIZMAS). During the melt season, the maximum pond coverage and depth were 21% and 22 ± 13 cm, respectively, with distribution and depth corresponding to surface roughness and ice thickness. Compared to observations, both models overestimate melt pond coverage in summer, with maximum values of approximately 41% (MIZMAS) and 51% (CESM2). This overestimation has important implications for accurately simulating albedo feedbacks. During the observed freeze-up, weather events, including rain on snow, caused high-frequency variability in snow depth, while pond coverage and depth remained relatively constant until continuous freezing ensued. Both models accurately simulate the abrupt cessation of melt ponds during freeze-up, but the dates of freeze-up differ. MIZMAS accurately simulates the observed date of freeze-up, while CESM2 simulates freeze-up one-to-two weeks earlier. This work demonstrates areas that warrant future observation-model synthesis for improving the representation of sea-ice processes and properties, which can aid accurate simulations of albedo feedbacks in a warming climate.</abstract><cop>United States</cop><pub>University of California Press</pub><doi>10.1525/elementa.2021.000072</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2325-1026
ispartof Elementa (Washington, D.C.), 2022-05, Vol.10 (1)
issn 2325-1026
2325-1026
language eng
recordid cdi_osti_scitechconnect_1871197
source EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Arctic
ENVIRONMENTAL SCIENCES
Melt ponds
Sea ice
Snow
title Spatiotemporal evolution of melt ponds on Arctic sea ice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A45%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatiotemporal%20evolution%20of%20melt%20ponds%20on%20Arctic%20sea%20ice&rft.jtitle=Elementa%20(Washington,%20D.C.)&rft.au=Webster,%20Melinda%20A.&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Atmospheric%20Radiation%20Measurement%20(ARM)%20Data%20Center&rft.date=2022-05-11&rft.volume=10&rft.issue=1&rft.issn=2325-1026&rft.eissn=2325-1026&rft_id=info:doi/10.1525/elementa.2021.000072&rft_dat=%3Ccrossref_osti_%3E10_1525_elementa_2021_000072%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true