Modeling as-manufactured fiber-reinforced microstructures based on X-ray microcomputed tomography

A new approach is presented to convert X-ray microcomputed tomography (μCT) image data of as-manufactured fiber-reinforced microstructures into high-fidelity finite element (FE) meshes. The mesh-generation approach leverages existing image segmentation and meshing tools to generate FE meshes of a wo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites science and technology 2021-09, Vol.214 (C), p.109004, Article 109004
Hauptverfasser: Creveling, Peter J., Fisher, John, Dahlkamp, Chris, Czabaj, Michael W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page 109004
container_title Composites science and technology
container_volume 214
creator Creveling, Peter J.
Fisher, John
Dahlkamp, Chris
Czabaj, Michael W.
description A new approach is presented to convert X-ray microcomputed tomography (μCT) image data of as-manufactured fiber-reinforced microstructures into high-fidelity finite element (FE) meshes. The mesh-generation approach leverages existing image segmentation and meshing tools to generate FE meshes of a woven-fabric and fiber-reinforced composite (FRCs), where constituents in each microstructure are represented explicitly. Segmentation of fibers from X-ray μCT images was performed using a template-matching/Kalman-filter estimation algorithm, and flaws were segmented using Trainable Weka Segmentation. Segmentation data were converted into reduced-order images, which were subsequently imported into Simpleware™ for mesh generation. To demonstrate advancements of the mesh-generation process, biaxial and uniaxial FE simulations were performed in Abaqus® for the woven- and FRC microstructures, respectively. Results reveal that the mesh-generation approach allows for modeling of distinct interactions between constituents, including contact/friction between fibers and interactions at the fiber-matrix interfaces. Results from this work demonstrate that X-ray μCT images of complex fiber-reinforced microstructures can be converted into high-fidelity meshes, but the high number of elements required for discretization necessitates additional work to improving mesh efficiency. [Display omitted]
doi_str_mv 10.1016/j.compscitech.2021.109004
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1868800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266353821003602</els_id><sourcerecordid>2581014553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-c01babc2d851ba805c73a22f08160cd3d49051e3a64538114ae9d8e01386aaab3</originalsourceid><addsrcrecordid>eNqNkM1OwzAQhC0EEqXwDgHOLmsnTpwjqviTiriAxM1yHKd11MTBdpD69jikB46cbM3OrmY-hK4JrAiQ_K5dKdsNXpmg1W5FgZKolwDZCVoQXpSYAINTtACa5zhlKT9HF963AFCwki6QfLW13pt-m0iPO9mPjVRhdLpOGlNph502fWOdikJnlLM-uPHX4JNK-qjaPvnETh7m8RRmDFEOtrNbJ4fd4RKdNXLv9dXxXaKPx4f39TPevD29rO83WGW0CFgBqWSlaM1Z_HBgqkglpQ1wkoOq0zorgRGdyjyLLQjJpC5rroGkPJdSVukS3cx3Y0YjjkSU7XutgiA85xwgmm5n0-Ds16h9EK0dXR9zCcp4JJoxlkZXObumwt7pRgzOdNIdBAExYRet-INdTNjFjD3uruddHbt-G-2mKLqPAI2bktTW_OPKDx7ckpo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581014553</pqid></control><display><type>article</type><title>Modeling as-manufactured fiber-reinforced microstructures based on X-ray microcomputed tomography</title><source>Access via ScienceDirect (Elsevier)</source><creator>Creveling, Peter J. ; Fisher, John ; Dahlkamp, Chris ; Czabaj, Michael W.</creator><creatorcontrib>Creveling, Peter J. ; Fisher, John ; Dahlkamp, Chris ; Czabaj, Michael W.</creatorcontrib><description>A new approach is presented to convert X-ray microcomputed tomography (μCT) image data of as-manufactured fiber-reinforced microstructures into high-fidelity finite element (FE) meshes. The mesh-generation approach leverages existing image segmentation and meshing tools to generate FE meshes of a woven-fabric and fiber-reinforced composite (FRCs), where constituents in each microstructure are represented explicitly. Segmentation of fibers from X-ray μCT images was performed using a template-matching/Kalman-filter estimation algorithm, and flaws were segmented using Trainable Weka Segmentation. Segmentation data were converted into reduced-order images, which were subsequently imported into Simpleware™ for mesh generation. To demonstrate advancements of the mesh-generation process, biaxial and uniaxial FE simulations were performed in Abaqus® for the woven- and FRC microstructures, respectively. Results reveal that the mesh-generation approach allows for modeling of distinct interactions between constituents, including contact/friction between fibers and interactions at the fiber-matrix interfaces. Results from this work demonstrate that X-ray μCT images of complex fiber-reinforced microstructures can be converted into high-fidelity meshes, but the high number of elements required for discretization necessitates additional work to improving mesh efficiency. [Display omitted]</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2021.109004</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Accuracy ; Algorithms ; Computational mechanics ; Constituents ; Fiber composites ; Fiber reinforced composites ; Fiber-matrix interfaces ; Finite element analysis ; Finite element method ; Image segmentation ; Kalman filters ; Material modeling ; Mathematical models ; Mesh generation ; Microstructure ; Modelling ; Template matching ; Tomography ; X-ray computed tomography</subject><ispartof>Composites science and technology, 2021-09, Vol.214 (C), p.109004, Article 109004</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 29, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-c01babc2d851ba805c73a22f08160cd3d49051e3a64538114ae9d8e01386aaab3</citedby><cites>FETCH-LOGICAL-c427t-c01babc2d851ba805c73a22f08160cd3d49051e3a64538114ae9d8e01386aaab3</cites><orcidid>0000-0002-5658-9278 ; 0000-0001-8132-2041 ; 0000000181322041 ; 0000000256589278</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compscitech.2021.109004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1868800$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Creveling, Peter J.</creatorcontrib><creatorcontrib>Fisher, John</creatorcontrib><creatorcontrib>Dahlkamp, Chris</creatorcontrib><creatorcontrib>Czabaj, Michael W.</creatorcontrib><title>Modeling as-manufactured fiber-reinforced microstructures based on X-ray microcomputed tomography</title><title>Composites science and technology</title><description>A new approach is presented to convert X-ray microcomputed tomography (μCT) image data of as-manufactured fiber-reinforced microstructures into high-fidelity finite element (FE) meshes. The mesh-generation approach leverages existing image segmentation and meshing tools to generate FE meshes of a woven-fabric and fiber-reinforced composite (FRCs), where constituents in each microstructure are represented explicitly. Segmentation of fibers from X-ray μCT images was performed using a template-matching/Kalman-filter estimation algorithm, and flaws were segmented using Trainable Weka Segmentation. Segmentation data were converted into reduced-order images, which were subsequently imported into Simpleware™ for mesh generation. To demonstrate advancements of the mesh-generation process, biaxial and uniaxial FE simulations were performed in Abaqus® for the woven- and FRC microstructures, respectively. Results reveal that the mesh-generation approach allows for modeling of distinct interactions between constituents, including contact/friction between fibers and interactions at the fiber-matrix interfaces. Results from this work demonstrate that X-ray μCT images of complex fiber-reinforced microstructures can be converted into high-fidelity meshes, but the high number of elements required for discretization necessitates additional work to improving mesh efficiency. [Display omitted]</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Computational mechanics</subject><subject>Constituents</subject><subject>Fiber composites</subject><subject>Fiber reinforced composites</subject><subject>Fiber-matrix interfaces</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Image segmentation</subject><subject>Kalman filters</subject><subject>Material modeling</subject><subject>Mathematical models</subject><subject>Mesh generation</subject><subject>Microstructure</subject><subject>Modelling</subject><subject>Template matching</subject><subject>Tomography</subject><subject>X-ray computed tomography</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkM1OwzAQhC0EEqXwDgHOLmsnTpwjqviTiriAxM1yHKd11MTBdpD69jikB46cbM3OrmY-hK4JrAiQ_K5dKdsNXpmg1W5FgZKolwDZCVoQXpSYAINTtACa5zhlKT9HF963AFCwki6QfLW13pt-m0iPO9mPjVRhdLpOGlNph502fWOdikJnlLM-uPHX4JNK-qjaPvnETh7m8RRmDFEOtrNbJ4fd4RKdNXLv9dXxXaKPx4f39TPevD29rO83WGW0CFgBqWSlaM1Z_HBgqkglpQ1wkoOq0zorgRGdyjyLLQjJpC5rroGkPJdSVukS3cx3Y0YjjkSU7XutgiA85xwgmm5n0-Ds16h9EK0dXR9zCcp4JJoxlkZXObumwt7pRgzOdNIdBAExYRet-INdTNjFjD3uruddHbt-G-2mKLqPAI2bktTW_OPKDx7ckpo</recordid><startdate>20210929</startdate><enddate>20210929</enddate><creator>Creveling, Peter J.</creator><creator>Fisher, John</creator><creator>Dahlkamp, Chris</creator><creator>Czabaj, Michael W.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5658-9278</orcidid><orcidid>https://orcid.org/0000-0001-8132-2041</orcidid><orcidid>https://orcid.org/0000000181322041</orcidid><orcidid>https://orcid.org/0000000256589278</orcidid></search><sort><creationdate>20210929</creationdate><title>Modeling as-manufactured fiber-reinforced microstructures based on X-ray microcomputed tomography</title><author>Creveling, Peter J. ; Fisher, John ; Dahlkamp, Chris ; Czabaj, Michael W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-c01babc2d851ba805c73a22f08160cd3d49051e3a64538114ae9d8e01386aaab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Computational mechanics</topic><topic>Constituents</topic><topic>Fiber composites</topic><topic>Fiber reinforced composites</topic><topic>Fiber-matrix interfaces</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Image segmentation</topic><topic>Kalman filters</topic><topic>Material modeling</topic><topic>Mathematical models</topic><topic>Mesh generation</topic><topic>Microstructure</topic><topic>Modelling</topic><topic>Template matching</topic><topic>Tomography</topic><topic>X-ray computed tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Creveling, Peter J.</creatorcontrib><creatorcontrib>Fisher, John</creatorcontrib><creatorcontrib>Dahlkamp, Chris</creatorcontrib><creatorcontrib>Czabaj, Michael W.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Creveling, Peter J.</au><au>Fisher, John</au><au>Dahlkamp, Chris</au><au>Czabaj, Michael W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling as-manufactured fiber-reinforced microstructures based on X-ray microcomputed tomography</atitle><jtitle>Composites science and technology</jtitle><date>2021-09-29</date><risdate>2021</risdate><volume>214</volume><issue>C</issue><spage>109004</spage><pages>109004-</pages><artnum>109004</artnum><issn>0266-3538</issn><eissn>1879-1050</eissn><abstract>A new approach is presented to convert X-ray microcomputed tomography (μCT) image data of as-manufactured fiber-reinforced microstructures into high-fidelity finite element (FE) meshes. The mesh-generation approach leverages existing image segmentation and meshing tools to generate FE meshes of a woven-fabric and fiber-reinforced composite (FRCs), where constituents in each microstructure are represented explicitly. Segmentation of fibers from X-ray μCT images was performed using a template-matching/Kalman-filter estimation algorithm, and flaws were segmented using Trainable Weka Segmentation. Segmentation data were converted into reduced-order images, which were subsequently imported into Simpleware™ for mesh generation. To demonstrate advancements of the mesh-generation process, biaxial and uniaxial FE simulations were performed in Abaqus® for the woven- and FRC microstructures, respectively. Results reveal that the mesh-generation approach allows for modeling of distinct interactions between constituents, including contact/friction between fibers and interactions at the fiber-matrix interfaces. Results from this work demonstrate that X-ray μCT images of complex fiber-reinforced microstructures can be converted into high-fidelity meshes, but the high number of elements required for discretization necessitates additional work to improving mesh efficiency. [Display omitted]</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2021.109004</doi><orcidid>https://orcid.org/0000-0002-5658-9278</orcidid><orcidid>https://orcid.org/0000-0001-8132-2041</orcidid><orcidid>https://orcid.org/0000000181322041</orcidid><orcidid>https://orcid.org/0000000256589278</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0266-3538
ispartof Composites science and technology, 2021-09, Vol.214 (C), p.109004, Article 109004
issn 0266-3538
1879-1050
language eng
recordid cdi_osti_scitechconnect_1868800
source Access via ScienceDirect (Elsevier)
subjects Accuracy
Algorithms
Computational mechanics
Constituents
Fiber composites
Fiber reinforced composites
Fiber-matrix interfaces
Finite element analysis
Finite element method
Image segmentation
Kalman filters
Material modeling
Mathematical models
Mesh generation
Microstructure
Modelling
Template matching
Tomography
X-ray computed tomography
title Modeling as-manufactured fiber-reinforced microstructures based on X-ray microcomputed tomography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T06%3A28%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20as-manufactured%20fiber-reinforced%20microstructures%20based%20on%20X-ray%20microcomputed%20tomography&rft.jtitle=Composites%20science%20and%20technology&rft.au=Creveling,%20Peter%20J.&rft.date=2021-09-29&rft.volume=214&rft.issue=C&rft.spage=109004&rft.pages=109004-&rft.artnum=109004&rft.issn=0266-3538&rft.eissn=1879-1050&rft_id=info:doi/10.1016/j.compscitech.2021.109004&rft_dat=%3Cproquest_osti_%3E2581014553%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581014553&rft_id=info:pmid/&rft_els_id=S0266353821003602&rfr_iscdi=true