Design and modeling of a fast neutron beam at a research reactor

A fast neutron irradiation beam has been designed and modeled in MCNP6, (Monte Carlo N-Particle) for use in the beam port 4 facility at the TRIGA Mark-II reactor at The University of Texas at Austin. This facility will be built to provide neutrons with energies resembling the Watt fission neutron sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2021-06, Vol.1001 (C), p.165284, Article 165284
Hauptverfasser: Barron, D.C., Pasman, M.E., De Luna, B.A., Artnak, E.J., Haas, D.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page 165284
container_title Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment
container_volume 1001
creator Barron, D.C.
Pasman, M.E.
De Luna, B.A.
Artnak, E.J.
Haas, D.A.
description A fast neutron irradiation beam has been designed and modeled in MCNP6, (Monte Carlo N-Particle) for use in the beam port 4 facility at the TRIGA Mark-II reactor at The University of Texas at Austin. This facility will be built to provide neutrons with energies resembling the Watt fission neutron spectrum by reducing thermal and epithermal neutron flux. A filter uses elements of lead, borated polyethylene, naturally enriched boron, 96% enriched boron-10 powder, and boron nitride. Sensitivity studies of the filter design were performed to produce an economic and effective facility. To filter the beam, natural boron, enriched boron, and boron nitride were used; to collimate the beam, elements of borated polyethylene and natural boron were employed. The filter is modular to allow for the order and contents of each filter element to be reproducible and exchangeable. This flexibility allows the system to improve over time should additional funding become available or other functionality be desired. The filter as modeled will produce a 10 cm diameter beam of filtered neutrons with a maximum flux of 3.75 × 106 n cm−2 s−1 at a reactor power of 950 kW. The resulting neutron flux resembles the pure 235U Watt fission spectrum with a slight elevation in the epithermal neutron flux.
doi_str_mv 10.1016/j.nima.2021.165284
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1868665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168900221002680</els_id><sourcerecordid>S0168900221002680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-7f48f66043b2a8071375c60d4a91db1248598e24daab634c548521a8798d14683</originalsourceid><addsrcrecordid>eNp9kEtLBDEQhIMouD7-gKfgfcYkk0ky4EFZn7DgRc8hk_TsZtlNJImC_94M69m-dFNUFc2H0BUlLSVU3Gzb4PemZYTRloqeKX6EFlRJ1gy9FMdoUU2qGQhhp-gs5y2pM0i1QHcPkP06YBMc3kcHOx_WOE7Y4MnkggN8lRQDHsHssSlVTpDBJLuph7Elpgt0Mpldhsu_fY4-nh7fly_N6u35dXm_amwnaWnkxNUkBOHdyIwiknayt4I4bgbqRsq46gcFjDtjRtFx21eBUaPkoBzlQnXn6PrQG3PxOltfwG5sDAFs0VQJJURfTexgsinmnGDSn6lyST-aEj2D0ls9g9IzKH0AVUO3hxDU9789pLkdggXn01zuov8v_gscNm7O</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design and modeling of a fast neutron beam at a research reactor</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Barron, D.C. ; Pasman, M.E. ; De Luna, B.A. ; Artnak, E.J. ; Haas, D.A.</creator><creatorcontrib>Barron, D.C. ; Pasman, M.E. ; De Luna, B.A. ; Artnak, E.J. ; Haas, D.A.</creatorcontrib><description>A fast neutron irradiation beam has been designed and modeled in MCNP6, (Monte Carlo N-Particle) for use in the beam port 4 facility at the TRIGA Mark-II reactor at The University of Texas at Austin. This facility will be built to provide neutrons with energies resembling the Watt fission neutron spectrum by reducing thermal and epithermal neutron flux. A filter uses elements of lead, borated polyethylene, naturally enriched boron, 96% enriched boron-10 powder, and boron nitride. Sensitivity studies of the filter design were performed to produce an economic and effective facility. To filter the beam, natural boron, enriched boron, and boron nitride were used; to collimate the beam, elements of borated polyethylene and natural boron were employed. The filter is modular to allow for the order and contents of each filter element to be reproducible and exchangeable. This flexibility allows the system to improve over time should additional funding become available or other functionality be desired. The filter as modeled will produce a 10 cm diameter beam of filtered neutrons with a maximum flux of 3.75 × 106 n cm−2 s−1 at a reactor power of 950 kW. The resulting neutron flux resembles the pure 235U Watt fission spectrum with a slight elevation in the epithermal neutron flux.</description><identifier>ISSN: 0168-9002</identifier><identifier>EISSN: 1872-9576</identifier><identifier>DOI: 10.1016/j.nima.2021.165284</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Fast neutrons ; Fission spectrum neutrons ; Neutron beam ; Research reactor</subject><ispartof>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2021-06, Vol.1001 (C), p.165284, Article 165284</ispartof><rights>2021 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-7f48f66043b2a8071375c60d4a91db1248598e24daab634c548521a8798d14683</citedby><cites>FETCH-LOGICAL-c371t-7f48f66043b2a8071375c60d4a91db1248598e24daab634c548521a8798d14683</cites><orcidid>0000-0002-0529-1922 ; 0000-0003-2929-8974 ; 0000-0001-9482-8201 ; 0000000205291922 ; 0000000329298974 ; 0000000194828201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0168900221002680$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1868665$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Barron, D.C.</creatorcontrib><creatorcontrib>Pasman, M.E.</creatorcontrib><creatorcontrib>De Luna, B.A.</creatorcontrib><creatorcontrib>Artnak, E.J.</creatorcontrib><creatorcontrib>Haas, D.A.</creatorcontrib><title>Design and modeling of a fast neutron beam at a research reactor</title><title>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</title><description>A fast neutron irradiation beam has been designed and modeled in MCNP6, (Monte Carlo N-Particle) for use in the beam port 4 facility at the TRIGA Mark-II reactor at The University of Texas at Austin. This facility will be built to provide neutrons with energies resembling the Watt fission neutron spectrum by reducing thermal and epithermal neutron flux. A filter uses elements of lead, borated polyethylene, naturally enriched boron, 96% enriched boron-10 powder, and boron nitride. Sensitivity studies of the filter design were performed to produce an economic and effective facility. To filter the beam, natural boron, enriched boron, and boron nitride were used; to collimate the beam, elements of borated polyethylene and natural boron were employed. The filter is modular to allow for the order and contents of each filter element to be reproducible and exchangeable. This flexibility allows the system to improve over time should additional funding become available or other functionality be desired. The filter as modeled will produce a 10 cm diameter beam of filtered neutrons with a maximum flux of 3.75 × 106 n cm−2 s−1 at a reactor power of 950 kW. The resulting neutron flux resembles the pure 235U Watt fission spectrum with a slight elevation in the epithermal neutron flux.</description><subject>Fast neutrons</subject><subject>Fission spectrum neutrons</subject><subject>Neutron beam</subject><subject>Research reactor</subject><issn>0168-9002</issn><issn>1872-9576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLBDEQhIMouD7-gKfgfcYkk0ky4EFZn7DgRc8hk_TsZtlNJImC_94M69m-dFNUFc2H0BUlLSVU3Gzb4PemZYTRloqeKX6EFlRJ1gy9FMdoUU2qGQhhp-gs5y2pM0i1QHcPkP06YBMc3kcHOx_WOE7Y4MnkggN8lRQDHsHssSlVTpDBJLuph7Elpgt0Mpldhsu_fY4-nh7fly_N6u35dXm_amwnaWnkxNUkBOHdyIwiknayt4I4bgbqRsq46gcFjDtjRtFx21eBUaPkoBzlQnXn6PrQG3PxOltfwG5sDAFs0VQJJURfTexgsinmnGDSn6lyST-aEj2D0ls9g9IzKH0AVUO3hxDU9789pLkdggXn01zuov8v_gscNm7O</recordid><startdate>20210611</startdate><enddate>20210611</enddate><creator>Barron, D.C.</creator><creator>Pasman, M.E.</creator><creator>De Luna, B.A.</creator><creator>Artnak, E.J.</creator><creator>Haas, D.A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0529-1922</orcidid><orcidid>https://orcid.org/0000-0003-2929-8974</orcidid><orcidid>https://orcid.org/0000-0001-9482-8201</orcidid><orcidid>https://orcid.org/0000000205291922</orcidid><orcidid>https://orcid.org/0000000329298974</orcidid><orcidid>https://orcid.org/0000000194828201</orcidid></search><sort><creationdate>20210611</creationdate><title>Design and modeling of a fast neutron beam at a research reactor</title><author>Barron, D.C. ; Pasman, M.E. ; De Luna, B.A. ; Artnak, E.J. ; Haas, D.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-7f48f66043b2a8071375c60d4a91db1248598e24daab634c548521a8798d14683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Fast neutrons</topic><topic>Fission spectrum neutrons</topic><topic>Neutron beam</topic><topic>Research reactor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barron, D.C.</creatorcontrib><creatorcontrib>Pasman, M.E.</creatorcontrib><creatorcontrib>De Luna, B.A.</creatorcontrib><creatorcontrib>Artnak, E.J.</creatorcontrib><creatorcontrib>Haas, D.A.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barron, D.C.</au><au>Pasman, M.E.</au><au>De Luna, B.A.</au><au>Artnak, E.J.</au><au>Haas, D.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and modeling of a fast neutron beam at a research reactor</atitle><jtitle>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle><date>2021-06-11</date><risdate>2021</risdate><volume>1001</volume><issue>C</issue><spage>165284</spage><pages>165284-</pages><artnum>165284</artnum><issn>0168-9002</issn><eissn>1872-9576</eissn><abstract>A fast neutron irradiation beam has been designed and modeled in MCNP6, (Monte Carlo N-Particle) for use in the beam port 4 facility at the TRIGA Mark-II reactor at The University of Texas at Austin. This facility will be built to provide neutrons with energies resembling the Watt fission neutron spectrum by reducing thermal and epithermal neutron flux. A filter uses elements of lead, borated polyethylene, naturally enriched boron, 96% enriched boron-10 powder, and boron nitride. Sensitivity studies of the filter design were performed to produce an economic and effective facility. To filter the beam, natural boron, enriched boron, and boron nitride were used; to collimate the beam, elements of borated polyethylene and natural boron were employed. The filter is modular to allow for the order and contents of each filter element to be reproducible and exchangeable. This flexibility allows the system to improve over time should additional funding become available or other functionality be desired. The filter as modeled will produce a 10 cm diameter beam of filtered neutrons with a maximum flux of 3.75 × 106 n cm−2 s−1 at a reactor power of 950 kW. The resulting neutron flux resembles the pure 235U Watt fission spectrum with a slight elevation in the epithermal neutron flux.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><doi>10.1016/j.nima.2021.165284</doi><orcidid>https://orcid.org/0000-0002-0529-1922</orcidid><orcidid>https://orcid.org/0000-0003-2929-8974</orcidid><orcidid>https://orcid.org/0000-0001-9482-8201</orcidid><orcidid>https://orcid.org/0000000205291922</orcidid><orcidid>https://orcid.org/0000000329298974</orcidid><orcidid>https://orcid.org/0000000194828201</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-9002
ispartof Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2021-06, Vol.1001 (C), p.165284, Article 165284
issn 0168-9002
1872-9576
language eng
recordid cdi_osti_scitechconnect_1868665
source Elsevier ScienceDirect Journals Complete
subjects Fast neutrons
Fission spectrum neutrons
Neutron beam
Research reactor
title Design and modeling of a fast neutron beam at a research reactor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T21%3A11%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20modeling%20of%20a%20fast%20neutron%20beam%20at%20a%20research%20reactor&rft.jtitle=Nuclear%20instruments%20&%20methods%20in%20physics%20research.%20Section%20A,%20Accelerators,%20spectrometers,%20detectors%20and%20associated%20equipment&rft.au=Barron,%20D.C.&rft.date=2021-06-11&rft.volume=1001&rft.issue=C&rft.spage=165284&rft.pages=165284-&rft.artnum=165284&rft.issn=0168-9002&rft.eissn=1872-9576&rft_id=info:doi/10.1016/j.nima.2021.165284&rft_dat=%3Celsevier_osti_%3ES0168900221002680%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0168900221002680&rfr_iscdi=true