Extension of the Generic Multi-Frequency Modelling Method for Type 3 Wind Turbines
Reflecting potential non-linearities of converter-based systems, especially frequency and sequence couplings, is an ongoing challenge for linearized multi-frequency models. Besides, design details are required to develop such models, which either are the intellectual property of manufacturers or req...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on energy conversion 2022-09, Vol.37 (3), p.1875-1884 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Reflecting potential non-linearities of converter-based systems, especially frequency and sequence couplings, is an ongoing challenge for linearized multi-frequency models. Besides, design details are required to develop such models, which either are the intellectual property of manufacturers or require experimental tests. The generic multi-frequency modelling method has been proposed to fill this gap; however, it is only developed for converter-connected systems, e.g., Type 4 Wind Turbines (WT). This paper proposes to extend the application of the generic multi-frequency modelling method for Type 3 WTs. In this way, a theory for patterns of the couplings in Type 3 WTs is proposed. Accordingly, a group of emissions and couplings are Rotor-Speed-Dependent (RSD). The RSD emissions and couplings are particular characteristics of Type 3 WTs, which should be addressed in the generic multi-frequency models. The proposed theory is verified by unique-worldwide experimental perturbation tests on a 2 MVA Type 3 WT using a 7 MVA grid emulator. Accordingly, a limited number of RSD couplings and emissions are observed in the test results, mainly in low frequencies (below 1 kHz). Therefore, addressing the RSD couplings is practical and important to extend the generic multi-frequency modelling for Type 3 WTs. |
---|---|
ISSN: | 0885-8969 1558-0059 |
DOI: | 10.1109/TEC.2022.3166470 |