Estimation of stagnation performance metrics in magnetized liner inertial fusion experiments using Bayesian data assimilation
We present a new analysis methodology that allows for the self-consistent integration of multiple diagnostics including nuclear measurements, x-ray imaging, and x-ray power detectors to determine the primary stagnation parameters, such as temperature, pressure, stagnation volume, and mix fraction in...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2022-05, Vol.29 (5) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 29 |
creator | Knapp, P. F. Glinsky, M. E. Schaeuble, M. A. Jennings, C. A. Evans, M. Gunning, J. Awe, T. J. Chandler, G. A. Geissel, M. Gomez, M. R. Hahn, K. D. Hansen, S. B. Harding, E. C. Harvey-Thompson, A. J. Humane, S. Klein, B. T. Mangan, M. Nagayama, T. Porwitzky, A. J. Ruiz, D. E. Schmit, P. F. Slutz, S. A. Smith, I. C. Weis, M. R. Yager-Elorriaga, D. A. Ampleford, D. J. Beckwith, K. Mattsson, T. R. Peterson, K. J. Sinars, D. B. |
description | We present a new analysis methodology that allows for the self-consistent integration of multiple diagnostics including nuclear measurements, x-ray imaging, and x-ray power detectors to determine the primary stagnation parameters, such as temperature, pressure, stagnation volume, and mix fraction in magnetized liner inertial fusion (MagLIF) experiments. The analysis uses a simplified model of the stagnation plasma in conjunction with a Bayesian inference framework to determine the most probable configuration that describes the experimental observations while simultaneously revealing the principal uncertainties in the analysis. We validate the approach by using a range of tests including analytic and three-dimensional MHD models. An ensemble of MagLIF experiments is analyzed, and the generalized Lawson criterion χ is estimated for all experiments. |
doi_str_mv | 10.1063/5.0087115 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1868390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2665905912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-5f22737e223ef9391921648b8620b0642cbb86a134ef603f80ef0dbf0c3783463</originalsourceid><addsrcrecordid>eNp9kUtLJDEQx5tFYcfHYb9B0JNCu5WkO50-qsw-QPCi4C1kMhU3Mp2MSWbZEfa7b9oe1oPgpV786vGnquoLhQsKgn9tLwBkR2n7qZpRkH3dia7ZG-MOaiGah8_VQUpPANCIVs6qv_OU3aCzC54ES1LWj37K1hhtiIP2BsmAOTqTiPNkKABm94JLsnIeIxlNdnpF7CaNffindLoBfU6kVPwjudJbTE57stRZE52SG9zqdclRtW_1KuHxzh9W99_md9c_6pvb7z-vL29qw2Wf69Yy1vEOGeNoe97TnlHRyIUUDBYgGmYWJdaUN2gFcCsBLSwXFgzvJG8EP6xOprmhqFXJuIzmlwneo8mKSiF5DwU6naB1DM8bTFk9hU305S7FhGh7aHvKCnU2USaGlCJatS5qddwqCmp8gWrV7gWFPZ_YceOr4P_w7xDfQLVe2o_g95P_AeUNljY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665905912</pqid></control><display><type>article</type><title>Estimation of stagnation performance metrics in magnetized liner inertial fusion experiments using Bayesian data assimilation</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Knapp, P. F. ; Glinsky, M. E. ; Schaeuble, M. A. ; Jennings, C. A. ; Evans, M. ; Gunning, J. ; Awe, T. J. ; Chandler, G. A. ; Geissel, M. ; Gomez, M. R. ; Hahn, K. D. ; Hansen, S. B. ; Harding, E. C. ; Harvey-Thompson, A. J. ; Humane, S. ; Klein, B. T. ; Mangan, M. ; Nagayama, T. ; Porwitzky, A. J. ; Ruiz, D. E. ; Schmit, P. F. ; Slutz, S. A. ; Smith, I. C. ; Weis, M. R. ; Yager-Elorriaga, D. A. ; Ampleford, D. J. ; Beckwith, K. ; Mattsson, T. R. ; Peterson, K. J. ; Sinars, D. B.</creator><creatorcontrib>Knapp, P. F. ; Glinsky, M. E. ; Schaeuble, M. A. ; Jennings, C. A. ; Evans, M. ; Gunning, J. ; Awe, T. J. ; Chandler, G. A. ; Geissel, M. ; Gomez, M. R. ; Hahn, K. D. ; Hansen, S. B. ; Harding, E. C. ; Harvey-Thompson, A. J. ; Humane, S. ; Klein, B. T. ; Mangan, M. ; Nagayama, T. ; Porwitzky, A. J. ; Ruiz, D. E. ; Schmit, P. F. ; Slutz, S. A. ; Smith, I. C. ; Weis, M. R. ; Yager-Elorriaga, D. A. ; Ampleford, D. J. ; Beckwith, K. ; Mattsson, T. R. ; Peterson, K. J. ; Sinars, D. B.</creatorcontrib><description>We present a new analysis methodology that allows for the self-consistent integration of multiple diagnostics including nuclear measurements, x-ray imaging, and x-ray power detectors to determine the primary stagnation parameters, such as temperature, pressure, stagnation volume, and mix fraction in magnetized liner inertial fusion (MagLIF) experiments. The analysis uses a simplified model of the stagnation plasma in conjunction with a Bayesian inference framework to determine the most probable configuration that describes the experimental observations while simultaneously revealing the principal uncertainties in the analysis. We validate the approach by using a range of tests including analytic and three-dimensional MHD models. An ensemble of MagLIF experiments is analyzed, and the generalized Lawson criterion χ is estimated for all experiments.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0087115</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Bayesian analysis ; Experiments ; Inertial fusion (reactor) ; Performance measurement ; Plasma physics ; Stagnation ; Statistical inference ; Three dimensional analysis ; Three dimensional models ; X ray imagery</subject><ispartof>Physics of plasmas, 2022-05, Vol.29 (5)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-5f22737e223ef9391921648b8620b0642cbb86a134ef603f80ef0dbf0c3783463</citedby><cites>FETCH-LOGICAL-c389t-5f22737e223ef9391921648b8620b0642cbb86a134ef603f80ef0dbf0c3783463</cites><orcidid>0000-0002-9503-1904 ; 0000-0002-3742-2421 ; 0000-0003-1242-0363 ; 0000-0003-2493-3326 ; 0000-0001-6110-1700 ; 0000-0001-5036-0969 ; 0000-0001-8869-5203 ; 0000-0002-1967-7113 ; 0000-0002-2321-3274 ; 0000-0001-6202-4292 ; 0000-0002-9709-7333 ; 0000-0002-3009-8673 ; 0000-0003-2441-4139 ; 0000-0003-0061-5323 ; 0000-0001-8806-7426 ; 0000-0003-4607-6310 ; 0000-0002-5610-8331 ; 0000-0001-5547-3532 ; 0000000324933326 ; 0000000219677113 ; 0000000155473532 ; 0000000161101700 ; 0000000188695203 ; 0000000300615323 ; 0000000230098673 ; 0000000188067426 ; 0000000324414139 ; 0000000162024292 ; 0000000150360969 ; 0000000346076310 ; 0000000312420363 ; 0000000297097333 ; 0000000256108331 ; 0000000223213274 ; 0000000295031904 ; 0000000237422421</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/5.0087115$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,315,782,786,796,887,4516,27933,27934,76394</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1868390$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Knapp, P. F.</creatorcontrib><creatorcontrib>Glinsky, M. E.</creatorcontrib><creatorcontrib>Schaeuble, M. A.</creatorcontrib><creatorcontrib>Jennings, C. A.</creatorcontrib><creatorcontrib>Evans, M.</creatorcontrib><creatorcontrib>Gunning, J.</creatorcontrib><creatorcontrib>Awe, T. J.</creatorcontrib><creatorcontrib>Chandler, G. A.</creatorcontrib><creatorcontrib>Geissel, M.</creatorcontrib><creatorcontrib>Gomez, M. R.</creatorcontrib><creatorcontrib>Hahn, K. D.</creatorcontrib><creatorcontrib>Hansen, S. B.</creatorcontrib><creatorcontrib>Harding, E. C.</creatorcontrib><creatorcontrib>Harvey-Thompson, A. J.</creatorcontrib><creatorcontrib>Humane, S.</creatorcontrib><creatorcontrib>Klein, B. T.</creatorcontrib><creatorcontrib>Mangan, M.</creatorcontrib><creatorcontrib>Nagayama, T.</creatorcontrib><creatorcontrib>Porwitzky, A. J.</creatorcontrib><creatorcontrib>Ruiz, D. E.</creatorcontrib><creatorcontrib>Schmit, P. F.</creatorcontrib><creatorcontrib>Slutz, S. A.</creatorcontrib><creatorcontrib>Smith, I. C.</creatorcontrib><creatorcontrib>Weis, M. R.</creatorcontrib><creatorcontrib>Yager-Elorriaga, D. A.</creatorcontrib><creatorcontrib>Ampleford, D. J.</creatorcontrib><creatorcontrib>Beckwith, K.</creatorcontrib><creatorcontrib>Mattsson, T. R.</creatorcontrib><creatorcontrib>Peterson, K. J.</creatorcontrib><creatorcontrib>Sinars, D. B.</creatorcontrib><title>Estimation of stagnation performance metrics in magnetized liner inertial fusion experiments using Bayesian data assimilation</title><title>Physics of plasmas</title><description>We present a new analysis methodology that allows for the self-consistent integration of multiple diagnostics including nuclear measurements, x-ray imaging, and x-ray power detectors to determine the primary stagnation parameters, such as temperature, pressure, stagnation volume, and mix fraction in magnetized liner inertial fusion (MagLIF) experiments. The analysis uses a simplified model of the stagnation plasma in conjunction with a Bayesian inference framework to determine the most probable configuration that describes the experimental observations while simultaneously revealing the principal uncertainties in the analysis. We validate the approach by using a range of tests including analytic and three-dimensional MHD models. An ensemble of MagLIF experiments is analyzed, and the generalized Lawson criterion χ is estimated for all experiments.</description><subject>Bayesian analysis</subject><subject>Experiments</subject><subject>Inertial fusion (reactor)</subject><subject>Performance measurement</subject><subject>Plasma physics</subject><subject>Stagnation</subject><subject>Statistical inference</subject><subject>Three dimensional analysis</subject><subject>Three dimensional models</subject><subject>X ray imagery</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kUtLJDEQx5tFYcfHYb9B0JNCu5WkO50-qsw-QPCi4C1kMhU3Mp2MSWbZEfa7b9oe1oPgpV786vGnquoLhQsKgn9tLwBkR2n7qZpRkH3dia7ZG-MOaiGah8_VQUpPANCIVs6qv_OU3aCzC54ES1LWj37K1hhtiIP2BsmAOTqTiPNkKABm94JLsnIeIxlNdnpF7CaNffindLoBfU6kVPwjudJbTE57stRZE52SG9zqdclRtW_1KuHxzh9W99_md9c_6pvb7z-vL29qw2Wf69Yy1vEOGeNoe97TnlHRyIUUDBYgGmYWJdaUN2gFcCsBLSwXFgzvJG8EP6xOprmhqFXJuIzmlwneo8mKSiF5DwU6naB1DM8bTFk9hU305S7FhGh7aHvKCnU2USaGlCJatS5qddwqCmp8gWrV7gWFPZ_YceOr4P_w7xDfQLVe2o_g95P_AeUNljY</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Knapp, P. F.</creator><creator>Glinsky, M. E.</creator><creator>Schaeuble, M. A.</creator><creator>Jennings, C. A.</creator><creator>Evans, M.</creator><creator>Gunning, J.</creator><creator>Awe, T. J.</creator><creator>Chandler, G. A.</creator><creator>Geissel, M.</creator><creator>Gomez, M. R.</creator><creator>Hahn, K. D.</creator><creator>Hansen, S. B.</creator><creator>Harding, E. C.</creator><creator>Harvey-Thompson, A. J.</creator><creator>Humane, S.</creator><creator>Klein, B. T.</creator><creator>Mangan, M.</creator><creator>Nagayama, T.</creator><creator>Porwitzky, A. J.</creator><creator>Ruiz, D. E.</creator><creator>Schmit, P. F.</creator><creator>Slutz, S. A.</creator><creator>Smith, I. C.</creator><creator>Weis, M. R.</creator><creator>Yager-Elorriaga, D. A.</creator><creator>Ampleford, D. J.</creator><creator>Beckwith, K.</creator><creator>Mattsson, T. R.</creator><creator>Peterson, K. J.</creator><creator>Sinars, D. B.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9503-1904</orcidid><orcidid>https://orcid.org/0000-0002-3742-2421</orcidid><orcidid>https://orcid.org/0000-0003-1242-0363</orcidid><orcidid>https://orcid.org/0000-0003-2493-3326</orcidid><orcidid>https://orcid.org/0000-0001-6110-1700</orcidid><orcidid>https://orcid.org/0000-0001-5036-0969</orcidid><orcidid>https://orcid.org/0000-0001-8869-5203</orcidid><orcidid>https://orcid.org/0000-0002-1967-7113</orcidid><orcidid>https://orcid.org/0000-0002-2321-3274</orcidid><orcidid>https://orcid.org/0000-0001-6202-4292</orcidid><orcidid>https://orcid.org/0000-0002-9709-7333</orcidid><orcidid>https://orcid.org/0000-0002-3009-8673</orcidid><orcidid>https://orcid.org/0000-0003-2441-4139</orcidid><orcidid>https://orcid.org/0000-0003-0061-5323</orcidid><orcidid>https://orcid.org/0000-0001-8806-7426</orcidid><orcidid>https://orcid.org/0000-0003-4607-6310</orcidid><orcidid>https://orcid.org/0000-0002-5610-8331</orcidid><orcidid>https://orcid.org/0000-0001-5547-3532</orcidid><orcidid>https://orcid.org/0000000324933326</orcidid><orcidid>https://orcid.org/0000000219677113</orcidid><orcidid>https://orcid.org/0000000155473532</orcidid><orcidid>https://orcid.org/0000000161101700</orcidid><orcidid>https://orcid.org/0000000188695203</orcidid><orcidid>https://orcid.org/0000000300615323</orcidid><orcidid>https://orcid.org/0000000230098673</orcidid><orcidid>https://orcid.org/0000000188067426</orcidid><orcidid>https://orcid.org/0000000324414139</orcidid><orcidid>https://orcid.org/0000000162024292</orcidid><orcidid>https://orcid.org/0000000150360969</orcidid><orcidid>https://orcid.org/0000000346076310</orcidid><orcidid>https://orcid.org/0000000312420363</orcidid><orcidid>https://orcid.org/0000000297097333</orcidid><orcidid>https://orcid.org/0000000256108331</orcidid><orcidid>https://orcid.org/0000000223213274</orcidid><orcidid>https://orcid.org/0000000295031904</orcidid><orcidid>https://orcid.org/0000000237422421</orcidid></search><sort><creationdate>202205</creationdate><title>Estimation of stagnation performance metrics in magnetized liner inertial fusion experiments using Bayesian data assimilation</title><author>Knapp, P. F. ; Glinsky, M. E. ; Schaeuble, M. A. ; Jennings, C. A. ; Evans, M. ; Gunning, J. ; Awe, T. J. ; Chandler, G. A. ; Geissel, M. ; Gomez, M. R. ; Hahn, K. D. ; Hansen, S. B. ; Harding, E. C. ; Harvey-Thompson, A. J. ; Humane, S. ; Klein, B. T. ; Mangan, M. ; Nagayama, T. ; Porwitzky, A. J. ; Ruiz, D. E. ; Schmit, P. F. ; Slutz, S. A. ; Smith, I. C. ; Weis, M. R. ; Yager-Elorriaga, D. A. ; Ampleford, D. J. ; Beckwith, K. ; Mattsson, T. R. ; Peterson, K. J. ; Sinars, D. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-5f22737e223ef9391921648b8620b0642cbb86a134ef603f80ef0dbf0c3783463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bayesian analysis</topic><topic>Experiments</topic><topic>Inertial fusion (reactor)</topic><topic>Performance measurement</topic><topic>Plasma physics</topic><topic>Stagnation</topic><topic>Statistical inference</topic><topic>Three dimensional analysis</topic><topic>Three dimensional models</topic><topic>X ray imagery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knapp, P. F.</creatorcontrib><creatorcontrib>Glinsky, M. E.</creatorcontrib><creatorcontrib>Schaeuble, M. A.</creatorcontrib><creatorcontrib>Jennings, C. A.</creatorcontrib><creatorcontrib>Evans, M.</creatorcontrib><creatorcontrib>Gunning, J.</creatorcontrib><creatorcontrib>Awe, T. J.</creatorcontrib><creatorcontrib>Chandler, G. A.</creatorcontrib><creatorcontrib>Geissel, M.</creatorcontrib><creatorcontrib>Gomez, M. R.</creatorcontrib><creatorcontrib>Hahn, K. D.</creatorcontrib><creatorcontrib>Hansen, S. B.</creatorcontrib><creatorcontrib>Harding, E. C.</creatorcontrib><creatorcontrib>Harvey-Thompson, A. J.</creatorcontrib><creatorcontrib>Humane, S.</creatorcontrib><creatorcontrib>Klein, B. T.</creatorcontrib><creatorcontrib>Mangan, M.</creatorcontrib><creatorcontrib>Nagayama, T.</creatorcontrib><creatorcontrib>Porwitzky, A. J.</creatorcontrib><creatorcontrib>Ruiz, D. E.</creatorcontrib><creatorcontrib>Schmit, P. F.</creatorcontrib><creatorcontrib>Slutz, S. A.</creatorcontrib><creatorcontrib>Smith, I. C.</creatorcontrib><creatorcontrib>Weis, M. R.</creatorcontrib><creatorcontrib>Yager-Elorriaga, D. A.</creatorcontrib><creatorcontrib>Ampleford, D. J.</creatorcontrib><creatorcontrib>Beckwith, K.</creatorcontrib><creatorcontrib>Mattsson, T. R.</creatorcontrib><creatorcontrib>Peterson, K. J.</creatorcontrib><creatorcontrib>Sinars, D. B.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knapp, P. F.</au><au>Glinsky, M. E.</au><au>Schaeuble, M. A.</au><au>Jennings, C. A.</au><au>Evans, M.</au><au>Gunning, J.</au><au>Awe, T. J.</au><au>Chandler, G. A.</au><au>Geissel, M.</au><au>Gomez, M. R.</au><au>Hahn, K. D.</au><au>Hansen, S. B.</au><au>Harding, E. C.</au><au>Harvey-Thompson, A. J.</au><au>Humane, S.</au><au>Klein, B. T.</au><au>Mangan, M.</au><au>Nagayama, T.</au><au>Porwitzky, A. J.</au><au>Ruiz, D. E.</au><au>Schmit, P. F.</au><au>Slutz, S. A.</au><au>Smith, I. C.</au><au>Weis, M. R.</au><au>Yager-Elorriaga, D. A.</au><au>Ampleford, D. J.</au><au>Beckwith, K.</au><au>Mattsson, T. R.</au><au>Peterson, K. J.</au><au>Sinars, D. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of stagnation performance metrics in magnetized liner inertial fusion experiments using Bayesian data assimilation</atitle><jtitle>Physics of plasmas</jtitle><date>2022-05</date><risdate>2022</risdate><volume>29</volume><issue>5</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>We present a new analysis methodology that allows for the self-consistent integration of multiple diagnostics including nuclear measurements, x-ray imaging, and x-ray power detectors to determine the primary stagnation parameters, such as temperature, pressure, stagnation volume, and mix fraction in magnetized liner inertial fusion (MagLIF) experiments. The analysis uses a simplified model of the stagnation plasma in conjunction with a Bayesian inference framework to determine the most probable configuration that describes the experimental observations while simultaneously revealing the principal uncertainties in the analysis. We validate the approach by using a range of tests including analytic and three-dimensional MHD models. An ensemble of MagLIF experiments is analyzed, and the generalized Lawson criterion χ is estimated for all experiments.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0087115</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9503-1904</orcidid><orcidid>https://orcid.org/0000-0002-3742-2421</orcidid><orcidid>https://orcid.org/0000-0003-1242-0363</orcidid><orcidid>https://orcid.org/0000-0003-2493-3326</orcidid><orcidid>https://orcid.org/0000-0001-6110-1700</orcidid><orcidid>https://orcid.org/0000-0001-5036-0969</orcidid><orcidid>https://orcid.org/0000-0001-8869-5203</orcidid><orcidid>https://orcid.org/0000-0002-1967-7113</orcidid><orcidid>https://orcid.org/0000-0002-2321-3274</orcidid><orcidid>https://orcid.org/0000-0001-6202-4292</orcidid><orcidid>https://orcid.org/0000-0002-9709-7333</orcidid><orcidid>https://orcid.org/0000-0002-3009-8673</orcidid><orcidid>https://orcid.org/0000-0003-2441-4139</orcidid><orcidid>https://orcid.org/0000-0003-0061-5323</orcidid><orcidid>https://orcid.org/0000-0001-8806-7426</orcidid><orcidid>https://orcid.org/0000-0003-4607-6310</orcidid><orcidid>https://orcid.org/0000-0002-5610-8331</orcidid><orcidid>https://orcid.org/0000-0001-5547-3532</orcidid><orcidid>https://orcid.org/0000000324933326</orcidid><orcidid>https://orcid.org/0000000219677113</orcidid><orcidid>https://orcid.org/0000000155473532</orcidid><orcidid>https://orcid.org/0000000161101700</orcidid><orcidid>https://orcid.org/0000000188695203</orcidid><orcidid>https://orcid.org/0000000300615323</orcidid><orcidid>https://orcid.org/0000000230098673</orcidid><orcidid>https://orcid.org/0000000188067426</orcidid><orcidid>https://orcid.org/0000000324414139</orcidid><orcidid>https://orcid.org/0000000162024292</orcidid><orcidid>https://orcid.org/0000000150360969</orcidid><orcidid>https://orcid.org/0000000346076310</orcidid><orcidid>https://orcid.org/0000000312420363</orcidid><orcidid>https://orcid.org/0000000297097333</orcidid><orcidid>https://orcid.org/0000000256108331</orcidid><orcidid>https://orcid.org/0000000223213274</orcidid><orcidid>https://orcid.org/0000000295031904</orcidid><orcidid>https://orcid.org/0000000237422421</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2022-05, Vol.29 (5) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_osti_scitechconnect_1868390 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Bayesian analysis Experiments Inertial fusion (reactor) Performance measurement Plasma physics Stagnation Statistical inference Three dimensional analysis Three dimensional models X ray imagery |
title | Estimation of stagnation performance metrics in magnetized liner inertial fusion experiments using Bayesian data assimilation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T00%3A05%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20stagnation%20performance%20metrics%20in%20magnetized%20liner%20inertial%20fusion%20experiments%20using%20Bayesian%20data%20assimilation&rft.jtitle=Physics%20of%20plasmas&rft.au=Knapp,%20P.%20F.&rft.date=2022-05&rft.volume=29&rft.issue=5&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0087115&rft_dat=%3Cproquest_osti_%3E2665905912%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2665905912&rft_id=info:pmid/&rfr_iscdi=true |