Coupled continuum and network model framework to study catalyst layers of polymer electrolyte fuel cells

The nanostructured thin film (NSTF) catalyst layers which have demonstrated high power densities, mass activities, and exceptional metal and support stability can have limited operational robustness due to their thin thickness and the hydrophilicity of the metal-coated nano whiskers. The dispersed n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hydrogen energy 2022-05, Vol.47 (40), p.17749-17761
Hauptverfasser: Liu, Jiangjin, Medici, Ezequiel, Haug, Andrew T., Cullen, David A., Tajiri, Kazuya, Allen, Jeffrey S., Zenyuk, Iryna V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17761
container_issue 40
container_start_page 17749
container_title International journal of hydrogen energy
container_volume 47
creator Liu, Jiangjin
Medici, Ezequiel
Haug, Andrew T.
Cullen, David A.
Tajiri, Kazuya
Allen, Jeffrey S.
Zenyuk, Iryna V.
description The nanostructured thin film (NSTF) catalyst layers which have demonstrated high power densities, mass activities, and exceptional metal and support stability can have limited operational robustness due to their thin thickness and the hydrophilicity of the metal-coated nano whiskers. The dispersed nanostructured thin film (dNSTF) catalyst layers have been developed by dispersing the NSTF Pt whiskers with ionomer and carbon support to increase the thickness and hydrophobicity. Continuum and network models (NM) are coupled through boundary conditions to study the polymer electrolyte fuel cell with a dNSTF cathode catalyst layer. The coupled model combines the computational efficiency of the continuum model with the pore-scale information in the dNSTF cathode catalyst layer of the NM. It captures the special morphology of the partially ionomer/water covered cylindrical whiskers, as well as water percolation through the pore structures and their impact on the cell performance. We observe optimal ionomer coverage on whiskers to be 0.5, ionomer to carbon ratio to be 0.9 and higher whisker to carbon ratios to be desired. •High efficiency, high fidelity coupled continuum and network models developed.•Pore-scale description of the dispersed nanostructured thin film (dNSTF) catalyst layer.•Optimal parameters and operating conditions determined for the dNSTF catalyst layer.
doi_str_mv 10.1016/j.ijhydene.2022.03.266
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1867925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319922014161</els_id><sourcerecordid>S0360319922014161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-4ee93f180f544a00ae6ebff4974fe6539faead4570ec7f58b081f4b81fa67fcb3</originalsourceid><addsrcrecordid>eNqFUE1LxDAQDaLguvoXJHhvTZo0aW_K4hcseNFzyKYTtmvaLEmq9N-bdfXsZYaB9zHvIXRNSUkJFbe7st9t5w5GKCtSVSVhZSXECVrQRrYF4408RQvCBCkYbdtzdBHjjhAqCW8XaLvy095Bh40fUz9O04D12OER0pcPH3jwHThsgx7g504exzR1MzY6aTfHhJ2eIUTsLd57Nw8QMDgwKeQjAbZTphtwLl6iM6tdhKvfvUTvjw9vq-di_fr0srpfF4Y1MhUcoGWWNsTWnGtCNAjYWMtbyS2ImrVWg-54LQkYaetmQxpq-SYPLaQ1G7ZEN0ddH1OvoukTmG0ON-anFG2EbKs6g8QRZIKPMYBV-9APOsyKEnUoVe3UX6nqUKoiTOVSM_HuSIQc4bOHcHCA0UDXh4NB5_v_JL4BK6-HRw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Coupled continuum and network model framework to study catalyst layers of polymer electrolyte fuel cells</title><source>Access via ScienceDirect (Elsevier)</source><creator>Liu, Jiangjin ; Medici, Ezequiel ; Haug, Andrew T. ; Cullen, David A. ; Tajiri, Kazuya ; Allen, Jeffrey S. ; Zenyuk, Iryna V.</creator><creatorcontrib>Liu, Jiangjin ; Medici, Ezequiel ; Haug, Andrew T. ; Cullen, David A. ; Tajiri, Kazuya ; Allen, Jeffrey S. ; Zenyuk, Iryna V.</creatorcontrib><description>The nanostructured thin film (NSTF) catalyst layers which have demonstrated high power densities, mass activities, and exceptional metal and support stability can have limited operational robustness due to their thin thickness and the hydrophilicity of the metal-coated nano whiskers. The dispersed nanostructured thin film (dNSTF) catalyst layers have been developed by dispersing the NSTF Pt whiskers with ionomer and carbon support to increase the thickness and hydrophobicity. Continuum and network models (NM) are coupled through boundary conditions to study the polymer electrolyte fuel cell with a dNSTF cathode catalyst layer. The coupled model combines the computational efficiency of the continuum model with the pore-scale information in the dNSTF cathode catalyst layer of the NM. It captures the special morphology of the partially ionomer/water covered cylindrical whiskers, as well as water percolation through the pore structures and their impact on the cell performance. We observe optimal ionomer coverage on whiskers to be 0.5, ionomer to carbon ratio to be 0.9 and higher whisker to carbon ratios to be desired. •High efficiency, high fidelity coupled continuum and network models developed.•Pore-scale description of the dispersed nanostructured thin film (dNSTF) catalyst layer.•Optimal parameters and operating conditions determined for the dNSTF catalyst layer.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2022.03.266</identifier><language>eng</language><publisher>United Kingdom: Elsevier Ltd</publisher><subject>Catalyst layers ; Continuum model ; Dispersed nanostructured thin films ; Ionomer coverage ; Network model ; Polymer electrolyte fuel cells</subject><ispartof>International journal of hydrogen energy, 2022-05, Vol.47 (40), p.17749-17761</ispartof><rights>2022 Hydrogen Energy Publications LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-4ee93f180f544a00ae6ebff4974fe6539faead4570ec7f58b081f4b81fa67fcb3</citedby><cites>FETCH-LOGICAL-c387t-4ee93f180f544a00ae6ebff4974fe6539faead4570ec7f58b081f4b81fa67fcb3</cites><orcidid>0000-0003-4357-2001 ; 0000-0002-1408-4335 ; 0000-0002-1612-0475 ; 0000000343572001 ; 0000000214084335 ; 0000000216120475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijhydene.2022.03.266$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1867925$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Jiangjin</creatorcontrib><creatorcontrib>Medici, Ezequiel</creatorcontrib><creatorcontrib>Haug, Andrew T.</creatorcontrib><creatorcontrib>Cullen, David A.</creatorcontrib><creatorcontrib>Tajiri, Kazuya</creatorcontrib><creatorcontrib>Allen, Jeffrey S.</creatorcontrib><creatorcontrib>Zenyuk, Iryna V.</creatorcontrib><title>Coupled continuum and network model framework to study catalyst layers of polymer electrolyte fuel cells</title><title>International journal of hydrogen energy</title><description>The nanostructured thin film (NSTF) catalyst layers which have demonstrated high power densities, mass activities, and exceptional metal and support stability can have limited operational robustness due to their thin thickness and the hydrophilicity of the metal-coated nano whiskers. The dispersed nanostructured thin film (dNSTF) catalyst layers have been developed by dispersing the NSTF Pt whiskers with ionomer and carbon support to increase the thickness and hydrophobicity. Continuum and network models (NM) are coupled through boundary conditions to study the polymer electrolyte fuel cell with a dNSTF cathode catalyst layer. The coupled model combines the computational efficiency of the continuum model with the pore-scale information in the dNSTF cathode catalyst layer of the NM. It captures the special morphology of the partially ionomer/water covered cylindrical whiskers, as well as water percolation through the pore structures and their impact on the cell performance. We observe optimal ionomer coverage on whiskers to be 0.5, ionomer to carbon ratio to be 0.9 and higher whisker to carbon ratios to be desired. •High efficiency, high fidelity coupled continuum and network models developed.•Pore-scale description of the dispersed nanostructured thin film (dNSTF) catalyst layer.•Optimal parameters and operating conditions determined for the dNSTF catalyst layer.</description><subject>Catalyst layers</subject><subject>Continuum model</subject><subject>Dispersed nanostructured thin films</subject><subject>Ionomer coverage</subject><subject>Network model</subject><subject>Polymer electrolyte fuel cells</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LxDAQDaLguvoXJHhvTZo0aW_K4hcseNFzyKYTtmvaLEmq9N-bdfXsZYaB9zHvIXRNSUkJFbe7st9t5w5GKCtSVSVhZSXECVrQRrYF4408RQvCBCkYbdtzdBHjjhAqCW8XaLvy095Bh40fUz9O04D12OER0pcPH3jwHThsgx7g504exzR1MzY6aTfHhJ2eIUTsLd57Nw8QMDgwKeQjAbZTphtwLl6iM6tdhKvfvUTvjw9vq-di_fr0srpfF4Y1MhUcoGWWNsTWnGtCNAjYWMtbyS2ImrVWg-54LQkYaetmQxpq-SYPLaQ1G7ZEN0ddH1OvoukTmG0ON-anFG2EbKs6g8QRZIKPMYBV-9APOsyKEnUoVe3UX6nqUKoiTOVSM_HuSIQc4bOHcHCA0UDXh4NB5_v_JL4BK6-HRw</recordid><startdate>20220508</startdate><enddate>20220508</enddate><creator>Liu, Jiangjin</creator><creator>Medici, Ezequiel</creator><creator>Haug, Andrew T.</creator><creator>Cullen, David A.</creator><creator>Tajiri, Kazuya</creator><creator>Allen, Jeffrey S.</creator><creator>Zenyuk, Iryna V.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4357-2001</orcidid><orcidid>https://orcid.org/0000-0002-1408-4335</orcidid><orcidid>https://orcid.org/0000-0002-1612-0475</orcidid><orcidid>https://orcid.org/0000000343572001</orcidid><orcidid>https://orcid.org/0000000214084335</orcidid><orcidid>https://orcid.org/0000000216120475</orcidid></search><sort><creationdate>20220508</creationdate><title>Coupled continuum and network model framework to study catalyst layers of polymer electrolyte fuel cells</title><author>Liu, Jiangjin ; Medici, Ezequiel ; Haug, Andrew T. ; Cullen, David A. ; Tajiri, Kazuya ; Allen, Jeffrey S. ; Zenyuk, Iryna V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-4ee93f180f544a00ae6ebff4974fe6539faead4570ec7f58b081f4b81fa67fcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Catalyst layers</topic><topic>Continuum model</topic><topic>Dispersed nanostructured thin films</topic><topic>Ionomer coverage</topic><topic>Network model</topic><topic>Polymer electrolyte fuel cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jiangjin</creatorcontrib><creatorcontrib>Medici, Ezequiel</creatorcontrib><creatorcontrib>Haug, Andrew T.</creatorcontrib><creatorcontrib>Cullen, David A.</creatorcontrib><creatorcontrib>Tajiri, Kazuya</creatorcontrib><creatorcontrib>Allen, Jeffrey S.</creatorcontrib><creatorcontrib>Zenyuk, Iryna V.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jiangjin</au><au>Medici, Ezequiel</au><au>Haug, Andrew T.</au><au>Cullen, David A.</au><au>Tajiri, Kazuya</au><au>Allen, Jeffrey S.</au><au>Zenyuk, Iryna V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupled continuum and network model framework to study catalyst layers of polymer electrolyte fuel cells</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2022-05-08</date><risdate>2022</risdate><volume>47</volume><issue>40</issue><spage>17749</spage><epage>17761</epage><pages>17749-17761</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><abstract>The nanostructured thin film (NSTF) catalyst layers which have demonstrated high power densities, mass activities, and exceptional metal and support stability can have limited operational robustness due to their thin thickness and the hydrophilicity of the metal-coated nano whiskers. The dispersed nanostructured thin film (dNSTF) catalyst layers have been developed by dispersing the NSTF Pt whiskers with ionomer and carbon support to increase the thickness and hydrophobicity. Continuum and network models (NM) are coupled through boundary conditions to study the polymer electrolyte fuel cell with a dNSTF cathode catalyst layer. The coupled model combines the computational efficiency of the continuum model with the pore-scale information in the dNSTF cathode catalyst layer of the NM. It captures the special morphology of the partially ionomer/water covered cylindrical whiskers, as well as water percolation through the pore structures and their impact on the cell performance. We observe optimal ionomer coverage on whiskers to be 0.5, ionomer to carbon ratio to be 0.9 and higher whisker to carbon ratios to be desired. •High efficiency, high fidelity coupled continuum and network models developed.•Pore-scale description of the dispersed nanostructured thin film (dNSTF) catalyst layer.•Optimal parameters and operating conditions determined for the dNSTF catalyst layer.</abstract><cop>United Kingdom</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2022.03.266</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4357-2001</orcidid><orcidid>https://orcid.org/0000-0002-1408-4335</orcidid><orcidid>https://orcid.org/0000-0002-1612-0475</orcidid><orcidid>https://orcid.org/0000000343572001</orcidid><orcidid>https://orcid.org/0000000214084335</orcidid><orcidid>https://orcid.org/0000000216120475</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0360-3199
ispartof International journal of hydrogen energy, 2022-05, Vol.47 (40), p.17749-17761
issn 0360-3199
1879-3487
language eng
recordid cdi_osti_scitechconnect_1867925
source Access via ScienceDirect (Elsevier)
subjects Catalyst layers
Continuum model
Dispersed nanostructured thin films
Ionomer coverage
Network model
Polymer electrolyte fuel cells
title Coupled continuum and network model framework to study catalyst layers of polymer electrolyte fuel cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A59%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupled%20continuum%20and%20network%20model%20framework%20to%20study%20catalyst%20layers%20of%20polymer%20electrolyte%20fuel%20cells&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Liu,%20Jiangjin&rft.date=2022-05-08&rft.volume=47&rft.issue=40&rft.spage=17749&rft.epage=17761&rft.pages=17749-17761&rft.issn=0360-3199&rft.eissn=1879-3487&rft_id=info:doi/10.1016/j.ijhydene.2022.03.266&rft_dat=%3Celsevier_osti_%3ES0360319922014161%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0360319922014161&rfr_iscdi=true