Mass transport in binary TiO2:SiO2 and GeO2:SiO2 direct ink write glasses

The mass transport mechanisms of Ti in TiO2:SiO2 and Ge in GeO2:SiO2 direct ink write, additively manufactured glasses were studied. Due to the low solubility of Ti in SiO2 and high melting point of TiO2 relative to SiO2, Ti transport was found to occur via solid state interdiffusion between adjoini...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2022-07, Vol.105 (7), p.4681-4690
Hauptverfasser: Lange, Andrew P., Sasan, Koroush, Bayu Aji, Leonardus Bimo, Yee, Timothy Y., Ha, Jungmin, Ryerson, F. J., Remulla, Gabriela, Dylla‐Spears, Rebecca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4690
container_issue 7
container_start_page 4681
container_title Journal of the American Ceramic Society
container_volume 105
creator Lange, Andrew P.
Sasan, Koroush
Bayu Aji, Leonardus Bimo
Yee, Timothy Y.
Ha, Jungmin
Ryerson, F. J.
Remulla, Gabriela
Dylla‐Spears, Rebecca
description The mass transport mechanisms of Ti in TiO2:SiO2 and Ge in GeO2:SiO2 direct ink write, additively manufactured glasses were studied. Due to the low solubility of Ti in SiO2 and high melting point of TiO2 relative to SiO2, Ti transport was found to occur via solid state interdiffusion between adjoining SiO2 and TiO2 precursor particles. The diffusivity of titanium in SiO2 measured over typical sintering temperatures (1000–1300°C) using Rutherford backscattering spectrometry was D=9.1×10−7[m2/s]exp(378[kJmol]RT)$D\ = \ 9.1{\rm{\ }} \times {10^{ - 7}}{\rm{\ }}[ {{\rm{m}}^2/{\rm{s}}} ]{\text{\ exp\ }}( {\frac{{378[ {\frac{{{\rm{kJ}}}{{{\rm{mol}}} ]}}{{RT}}} )$. This provides an estimate of ∼30 nm for the diffusion length under typical sintering conditions (2 h at 1200°C). Although Ti and Ge have similar diffusivities in SiO2 glass at low concentrations, GeO2 was found to be much more mobile during the sintering of printed GeO2:SiO2 green bodies. This was evident in glasses with phase separated GeO2 regions over length scales of ∼10 µm and in experiments involving binary xerogel films in which GeO2 migrated over ∼10 µm through cracked, porous SiO2 layers. Large phase separated regions and long transport lengths in GeO2:SiO2 suggest that the transport of GeO2 occurs prior to the densification of the SiO2 matrix via an alternative mechanism such as capillary flow. These results inform important considerations in the design of index modifying inks for the direct ink write process, namely initial precursor phase, mutual solubility with the base SiO2 glass, and mass transport throughout the sintering process.
doi_str_mv 10.1111/jace.18422
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1867546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2658418375</sourcerecordid><originalsourceid>FETCH-LOGICAL-o2882-8412efd68623350a666980767cb4a73c45f29d95ed42a4ce3ea33334ec4d1753</originalsourceid><addsrcrecordid>eNo1UE1PAjEUbIwmInrxFzR6XmxfP7brjRBADIaDe29Kt2gRu9guIfx7C-gc3nuTTCbzBqF7SgY042ltrBtQxQEuUI8KQQuoqLxEPUIIFKUCco1uUlpnSivFe2j2ZlLCXTQhbdvYYR_w0gcTD7j2C3h-zwOb0OCp-2eNj84ehV94H33n8McmW7h0i65WZpPc3d_uo3oyrkcvxXwxnY2G86IFpaBQnIJbNVJJYEwQI6WsFCllaZfclMxysYKqqYRrOBhuHXOGZXBneUNLwfro4Wzbps7rZHMC-2nbEHIoTZUsBZdZ9HgWbWP7s3Op0-t2F0OOpUGKHEGxkxU9q_Z-4w56G_13flxToo9d6mOX-tSlfh2OxqeL_QJq72XW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2658418375</pqid></control><display><type>article</type><title>Mass transport in binary TiO2:SiO2 and GeO2:SiO2 direct ink write glasses</title><source>Access via Wiley Online Library</source><creator>Lange, Andrew P. ; Sasan, Koroush ; Bayu Aji, Leonardus Bimo ; Yee, Timothy Y. ; Ha, Jungmin ; Ryerson, F. J. ; Remulla, Gabriela ; Dylla‐Spears, Rebecca</creator><creatorcontrib>Lange, Andrew P. ; Sasan, Koroush ; Bayu Aji, Leonardus Bimo ; Yee, Timothy Y. ; Ha, Jungmin ; Ryerson, F. J. ; Remulla, Gabriela ; Dylla‐Spears, Rebecca ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>The mass transport mechanisms of Ti in TiO2:SiO2 and Ge in GeO2:SiO2 direct ink write, additively manufactured glasses were studied. Due to the low solubility of Ti in SiO2 and high melting point of TiO2 relative to SiO2, Ti transport was found to occur via solid state interdiffusion between adjoining SiO2 and TiO2 precursor particles. The diffusivity of titanium in SiO2 measured over typical sintering temperatures (1000–1300°C) using Rutherford backscattering spectrometry was D=9.1×10−7[m2/s]exp(378[kJmol]RT)$D\ = \ 9.1{\rm{\ }} \times {10^{ - 7}}{\rm{\ }}[ {{\rm{m}}^2/{\rm{s}}} ]{\text{\ exp\ }}( {\frac{{378[ {\frac{{{\rm{kJ}}}{{{\rm{mol}}} ]}}{{RT}}} )$. This provides an estimate of ∼30 nm for the diffusion length under typical sintering conditions (2 h at 1200°C). Although Ti and Ge have similar diffusivities in SiO2 glass at low concentrations, GeO2 was found to be much more mobile during the sintering of printed GeO2:SiO2 green bodies. This was evident in glasses with phase separated GeO2 regions over length scales of ∼10 µm and in experiments involving binary xerogel films in which GeO2 migrated over ∼10 µm through cracked, porous SiO2 layers. Large phase separated regions and long transport lengths in GeO2:SiO2 suggest that the transport of GeO2 occurs prior to the densification of the SiO2 matrix via an alternative mechanism such as capillary flow. These results inform important considerations in the design of index modifying inks for the direct ink write process, namely initial precursor phase, mutual solubility with the base SiO2 glass, and mass transport throughout the sintering process.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.18422</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Backscattering ; Capillary flow ; Densification ; Design modifications ; Diffusion length ; diffusion/diffusivity ; germanates ; Germanium oxides ; Glass ; Inks ; Interdiffusion ; Low concentrations ; Mass transport ; MATERIALS SCIENCE ; Melting points ; Precursors ; silica ; Silicon dioxide ; sinter/sintering ; Sintering ; Sintering (powder metallurgy) ; Solubility ; Titanium ; Titanium dioxide ; Xerogels</subject><ispartof>Journal of the American Ceramic Society, 2022-07, Vol.105 (7), p.4681-4690</ispartof><rights>2022 The American Ceramic Society.</rights><rights>2022 The American Ceramic Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6762-0736 ; 0000000267620736</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.18422$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.18422$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1867546$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lange, Andrew P.</creatorcontrib><creatorcontrib>Sasan, Koroush</creatorcontrib><creatorcontrib>Bayu Aji, Leonardus Bimo</creatorcontrib><creatorcontrib>Yee, Timothy Y.</creatorcontrib><creatorcontrib>Ha, Jungmin</creatorcontrib><creatorcontrib>Ryerson, F. J.</creatorcontrib><creatorcontrib>Remulla, Gabriela</creatorcontrib><creatorcontrib>Dylla‐Spears, Rebecca</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Mass transport in binary TiO2:SiO2 and GeO2:SiO2 direct ink write glasses</title><title>Journal of the American Ceramic Society</title><description>The mass transport mechanisms of Ti in TiO2:SiO2 and Ge in GeO2:SiO2 direct ink write, additively manufactured glasses were studied. Due to the low solubility of Ti in SiO2 and high melting point of TiO2 relative to SiO2, Ti transport was found to occur via solid state interdiffusion between adjoining SiO2 and TiO2 precursor particles. The diffusivity of titanium in SiO2 measured over typical sintering temperatures (1000–1300°C) using Rutherford backscattering spectrometry was D=9.1×10−7[m2/s]exp(378[kJmol]RT)$D\ = \ 9.1{\rm{\ }} \times {10^{ - 7}}{\rm{\ }}[ {{\rm{m}}^2/{\rm{s}}} ]{\text{\ exp\ }}( {\frac{{378[ {\frac{{{\rm{kJ}}}{{{\rm{mol}}} ]}}{{RT}}} )$. This provides an estimate of ∼30 nm for the diffusion length under typical sintering conditions (2 h at 1200°C). Although Ti and Ge have similar diffusivities in SiO2 glass at low concentrations, GeO2 was found to be much more mobile during the sintering of printed GeO2:SiO2 green bodies. This was evident in glasses with phase separated GeO2 regions over length scales of ∼10 µm and in experiments involving binary xerogel films in which GeO2 migrated over ∼10 µm through cracked, porous SiO2 layers. Large phase separated regions and long transport lengths in GeO2:SiO2 suggest that the transport of GeO2 occurs prior to the densification of the SiO2 matrix via an alternative mechanism such as capillary flow. These results inform important considerations in the design of index modifying inks for the direct ink write process, namely initial precursor phase, mutual solubility with the base SiO2 glass, and mass transport throughout the sintering process.</description><subject>Backscattering</subject><subject>Capillary flow</subject><subject>Densification</subject><subject>Design modifications</subject><subject>Diffusion length</subject><subject>diffusion/diffusivity</subject><subject>germanates</subject><subject>Germanium oxides</subject><subject>Glass</subject><subject>Inks</subject><subject>Interdiffusion</subject><subject>Low concentrations</subject><subject>Mass transport</subject><subject>MATERIALS SCIENCE</subject><subject>Melting points</subject><subject>Precursors</subject><subject>silica</subject><subject>Silicon dioxide</subject><subject>sinter/sintering</subject><subject>Sintering</subject><subject>Sintering (powder metallurgy)</subject><subject>Solubility</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><subject>Xerogels</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo1UE1PAjEUbIwmInrxFzR6XmxfP7brjRBADIaDe29Kt2gRu9guIfx7C-gc3nuTTCbzBqF7SgY042ltrBtQxQEuUI8KQQuoqLxEPUIIFKUCco1uUlpnSivFe2j2ZlLCXTQhbdvYYR_w0gcTD7j2C3h-zwOb0OCp-2eNj84ehV94H33n8McmW7h0i65WZpPc3d_uo3oyrkcvxXwxnY2G86IFpaBQnIJbNVJJYEwQI6WsFCllaZfclMxysYKqqYRrOBhuHXOGZXBneUNLwfro4Wzbps7rZHMC-2nbEHIoTZUsBZdZ9HgWbWP7s3Op0-t2F0OOpUGKHEGxkxU9q_Z-4w56G_13flxToo9d6mOX-tSlfh2OxqeL_QJq72XW</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Lange, Andrew P.</creator><creator>Sasan, Koroush</creator><creator>Bayu Aji, Leonardus Bimo</creator><creator>Yee, Timothy Y.</creator><creator>Ha, Jungmin</creator><creator>Ryerson, F. J.</creator><creator>Remulla, Gabriela</creator><creator>Dylla‐Spears, Rebecca</creator><general>Wiley Subscription Services, Inc</general><general>American Ceramic Society</general><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6762-0736</orcidid><orcidid>https://orcid.org/0000000267620736</orcidid></search><sort><creationdate>202207</creationdate><title>Mass transport in binary TiO2:SiO2 and GeO2:SiO2 direct ink write glasses</title><author>Lange, Andrew P. ; Sasan, Koroush ; Bayu Aji, Leonardus Bimo ; Yee, Timothy Y. ; Ha, Jungmin ; Ryerson, F. J. ; Remulla, Gabriela ; Dylla‐Spears, Rebecca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o2882-8412efd68623350a666980767cb4a73c45f29d95ed42a4ce3ea33334ec4d1753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Backscattering</topic><topic>Capillary flow</topic><topic>Densification</topic><topic>Design modifications</topic><topic>Diffusion length</topic><topic>diffusion/diffusivity</topic><topic>germanates</topic><topic>Germanium oxides</topic><topic>Glass</topic><topic>Inks</topic><topic>Interdiffusion</topic><topic>Low concentrations</topic><topic>Mass transport</topic><topic>MATERIALS SCIENCE</topic><topic>Melting points</topic><topic>Precursors</topic><topic>silica</topic><topic>Silicon dioxide</topic><topic>sinter/sintering</topic><topic>Sintering</topic><topic>Sintering (powder metallurgy)</topic><topic>Solubility</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><topic>Xerogels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lange, Andrew P.</creatorcontrib><creatorcontrib>Sasan, Koroush</creatorcontrib><creatorcontrib>Bayu Aji, Leonardus Bimo</creatorcontrib><creatorcontrib>Yee, Timothy Y.</creatorcontrib><creatorcontrib>Ha, Jungmin</creatorcontrib><creatorcontrib>Ryerson, F. J.</creatorcontrib><creatorcontrib>Remulla, Gabriela</creatorcontrib><creatorcontrib>Dylla‐Spears, Rebecca</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lange, Andrew P.</au><au>Sasan, Koroush</au><au>Bayu Aji, Leonardus Bimo</au><au>Yee, Timothy Y.</au><au>Ha, Jungmin</au><au>Ryerson, F. J.</au><au>Remulla, Gabriela</au><au>Dylla‐Spears, Rebecca</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mass transport in binary TiO2:SiO2 and GeO2:SiO2 direct ink write glasses</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2022-07</date><risdate>2022</risdate><volume>105</volume><issue>7</issue><spage>4681</spage><epage>4690</epage><pages>4681-4690</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>The mass transport mechanisms of Ti in TiO2:SiO2 and Ge in GeO2:SiO2 direct ink write, additively manufactured glasses were studied. Due to the low solubility of Ti in SiO2 and high melting point of TiO2 relative to SiO2, Ti transport was found to occur via solid state interdiffusion between adjoining SiO2 and TiO2 precursor particles. The diffusivity of titanium in SiO2 measured over typical sintering temperatures (1000–1300°C) using Rutherford backscattering spectrometry was D=9.1×10−7[m2/s]exp(378[kJmol]RT)$D\ = \ 9.1{\rm{\ }} \times {10^{ - 7}}{\rm{\ }}[ {{\rm{m}}^2/{\rm{s}}} ]{\text{\ exp\ }}( {\frac{{378[ {\frac{{{\rm{kJ}}}{{{\rm{mol}}} ]}}{{RT}}} )$. This provides an estimate of ∼30 nm for the diffusion length under typical sintering conditions (2 h at 1200°C). Although Ti and Ge have similar diffusivities in SiO2 glass at low concentrations, GeO2 was found to be much more mobile during the sintering of printed GeO2:SiO2 green bodies. This was evident in glasses with phase separated GeO2 regions over length scales of ∼10 µm and in experiments involving binary xerogel films in which GeO2 migrated over ∼10 µm through cracked, porous SiO2 layers. Large phase separated regions and long transport lengths in GeO2:SiO2 suggest that the transport of GeO2 occurs prior to the densification of the SiO2 matrix via an alternative mechanism such as capillary flow. These results inform important considerations in the design of index modifying inks for the direct ink write process, namely initial precursor phase, mutual solubility with the base SiO2 glass, and mass transport throughout the sintering process.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.18422</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6762-0736</orcidid><orcidid>https://orcid.org/0000000267620736</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2022-07, Vol.105 (7), p.4681-4690
issn 0002-7820
1551-2916
language eng
recordid cdi_osti_scitechconnect_1867546
source Access via Wiley Online Library
subjects Backscattering
Capillary flow
Densification
Design modifications
Diffusion length
diffusion/diffusivity
germanates
Germanium oxides
Glass
Inks
Interdiffusion
Low concentrations
Mass transport
MATERIALS SCIENCE
Melting points
Precursors
silica
Silicon dioxide
sinter/sintering
Sintering
Sintering (powder metallurgy)
Solubility
Titanium
Titanium dioxide
Xerogels
title Mass transport in binary TiO2:SiO2 and GeO2:SiO2 direct ink write glasses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A06%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mass%20transport%20in%20binary%20TiO2:SiO2%20and%20GeO2:SiO2%20direct%20ink%20write%20glasses&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Lange,%20Andrew%20P.&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2022-07&rft.volume=105&rft.issue=7&rft.spage=4681&rft.epage=4690&rft.pages=4681-4690&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.18422&rft_dat=%3Cproquest_osti_%3E2658418375%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2658418375&rft_id=info:pmid/&rfr_iscdi=true