Mass transport in binary TiO2:SiO2 and GeO2:SiO2 direct ink write glasses
The mass transport mechanisms of Ti in TiO2:SiO2 and Ge in GeO2:SiO2 direct ink write, additively manufactured glasses were studied. Due to the low solubility of Ti in SiO2 and high melting point of TiO2 relative to SiO2, Ti transport was found to occur via solid state interdiffusion between adjoini...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2022-07, Vol.105 (7), p.4681-4690 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4690 |
---|---|
container_issue | 7 |
container_start_page | 4681 |
container_title | Journal of the American Ceramic Society |
container_volume | 105 |
creator | Lange, Andrew P. Sasan, Koroush Bayu Aji, Leonardus Bimo Yee, Timothy Y. Ha, Jungmin Ryerson, F. J. Remulla, Gabriela Dylla‐Spears, Rebecca |
description | The mass transport mechanisms of Ti in TiO2:SiO2 and Ge in GeO2:SiO2 direct ink write, additively manufactured glasses were studied. Due to the low solubility of Ti in SiO2 and high melting point of TiO2 relative to SiO2, Ti transport was found to occur via solid state interdiffusion between adjoining SiO2 and TiO2 precursor particles. The diffusivity of titanium in SiO2 measured over typical sintering temperatures (1000–1300°C) using Rutherford backscattering spectrometry was D=9.1×10−7[m2/s]exp(378[kJmol]RT)$D\ = \ 9.1{\rm{\ }} \times {10^{ - 7}}{\rm{\ }}[ {{\rm{m}}^2/{\rm{s}}} ]{\text{\ exp\ }}( {\frac{{378[ {\frac{{{\rm{kJ}}}{{{\rm{mol}}} ]}}{{RT}}} )$. This provides an estimate of ∼30 nm for the diffusion length under typical sintering conditions (2 h at 1200°C). Although Ti and Ge have similar diffusivities in SiO2 glass at low concentrations, GeO2 was found to be much more mobile during the sintering of printed GeO2:SiO2 green bodies. This was evident in glasses with phase separated GeO2 regions over length scales of ∼10 µm and in experiments involving binary xerogel films in which GeO2 migrated over ∼10 µm through cracked, porous SiO2 layers. Large phase separated regions and long transport lengths in GeO2:SiO2 suggest that the transport of GeO2 occurs prior to the densification of the SiO2 matrix via an alternative mechanism such as capillary flow. These results inform important considerations in the design of index modifying inks for the direct ink write process, namely initial precursor phase, mutual solubility with the base SiO2 glass, and mass transport throughout the sintering process. |
doi_str_mv | 10.1111/jace.18422 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1867546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2658418375</sourcerecordid><originalsourceid>FETCH-LOGICAL-o2882-8412efd68623350a666980767cb4a73c45f29d95ed42a4ce3ea33334ec4d1753</originalsourceid><addsrcrecordid>eNo1UE1PAjEUbIwmInrxFzR6XmxfP7brjRBADIaDe29Kt2gRu9guIfx7C-gc3nuTTCbzBqF7SgY042ltrBtQxQEuUI8KQQuoqLxEPUIIFKUCco1uUlpnSivFe2j2ZlLCXTQhbdvYYR_w0gcTD7j2C3h-zwOb0OCp-2eNj84ehV94H33n8McmW7h0i65WZpPc3d_uo3oyrkcvxXwxnY2G86IFpaBQnIJbNVJJYEwQI6WsFCllaZfclMxysYKqqYRrOBhuHXOGZXBneUNLwfro4Wzbps7rZHMC-2nbEHIoTZUsBZdZ9HgWbWP7s3Op0-t2F0OOpUGKHEGxkxU9q_Z-4w56G_13flxToo9d6mOX-tSlfh2OxqeL_QJq72XW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2658418375</pqid></control><display><type>article</type><title>Mass transport in binary TiO2:SiO2 and GeO2:SiO2 direct ink write glasses</title><source>Access via Wiley Online Library</source><creator>Lange, Andrew P. ; Sasan, Koroush ; Bayu Aji, Leonardus Bimo ; Yee, Timothy Y. ; Ha, Jungmin ; Ryerson, F. J. ; Remulla, Gabriela ; Dylla‐Spears, Rebecca</creator><creatorcontrib>Lange, Andrew P. ; Sasan, Koroush ; Bayu Aji, Leonardus Bimo ; Yee, Timothy Y. ; Ha, Jungmin ; Ryerson, F. J. ; Remulla, Gabriela ; Dylla‐Spears, Rebecca ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>The mass transport mechanisms of Ti in TiO2:SiO2 and Ge in GeO2:SiO2 direct ink write, additively manufactured glasses were studied. Due to the low solubility of Ti in SiO2 and high melting point of TiO2 relative to SiO2, Ti transport was found to occur via solid state interdiffusion between adjoining SiO2 and TiO2 precursor particles. The diffusivity of titanium in SiO2 measured over typical sintering temperatures (1000–1300°C) using Rutherford backscattering spectrometry was D=9.1×10−7[m2/s]exp(378[kJmol]RT)$D\ = \ 9.1{\rm{\ }} \times {10^{ - 7}}{\rm{\ }}[ {{\rm{m}}^2/{\rm{s}}} ]{\text{\ exp\ }}( {\frac{{378[ {\frac{{{\rm{kJ}}}{{{\rm{mol}}} ]}}{{RT}}} )$. This provides an estimate of ∼30 nm for the diffusion length under typical sintering conditions (2 h at 1200°C). Although Ti and Ge have similar diffusivities in SiO2 glass at low concentrations, GeO2 was found to be much more mobile during the sintering of printed GeO2:SiO2 green bodies. This was evident in glasses with phase separated GeO2 regions over length scales of ∼10 µm and in experiments involving binary xerogel films in which GeO2 migrated over ∼10 µm through cracked, porous SiO2 layers. Large phase separated regions and long transport lengths in GeO2:SiO2 suggest that the transport of GeO2 occurs prior to the densification of the SiO2 matrix via an alternative mechanism such as capillary flow. These results inform important considerations in the design of index modifying inks for the direct ink write process, namely initial precursor phase, mutual solubility with the base SiO2 glass, and mass transport throughout the sintering process.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.18422</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Backscattering ; Capillary flow ; Densification ; Design modifications ; Diffusion length ; diffusion/diffusivity ; germanates ; Germanium oxides ; Glass ; Inks ; Interdiffusion ; Low concentrations ; Mass transport ; MATERIALS SCIENCE ; Melting points ; Precursors ; silica ; Silicon dioxide ; sinter/sintering ; Sintering ; Sintering (powder metallurgy) ; Solubility ; Titanium ; Titanium dioxide ; Xerogels</subject><ispartof>Journal of the American Ceramic Society, 2022-07, Vol.105 (7), p.4681-4690</ispartof><rights>2022 The American Ceramic Society.</rights><rights>2022 The American Ceramic Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6762-0736 ; 0000000267620736</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.18422$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.18422$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1867546$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lange, Andrew P.</creatorcontrib><creatorcontrib>Sasan, Koroush</creatorcontrib><creatorcontrib>Bayu Aji, Leonardus Bimo</creatorcontrib><creatorcontrib>Yee, Timothy Y.</creatorcontrib><creatorcontrib>Ha, Jungmin</creatorcontrib><creatorcontrib>Ryerson, F. J.</creatorcontrib><creatorcontrib>Remulla, Gabriela</creatorcontrib><creatorcontrib>Dylla‐Spears, Rebecca</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Mass transport in binary TiO2:SiO2 and GeO2:SiO2 direct ink write glasses</title><title>Journal of the American Ceramic Society</title><description>The mass transport mechanisms of Ti in TiO2:SiO2 and Ge in GeO2:SiO2 direct ink write, additively manufactured glasses were studied. Due to the low solubility of Ti in SiO2 and high melting point of TiO2 relative to SiO2, Ti transport was found to occur via solid state interdiffusion between adjoining SiO2 and TiO2 precursor particles. The diffusivity of titanium in SiO2 measured over typical sintering temperatures (1000–1300°C) using Rutherford backscattering spectrometry was D=9.1×10−7[m2/s]exp(378[kJmol]RT)$D\ = \ 9.1{\rm{\ }} \times {10^{ - 7}}{\rm{\ }}[ {{\rm{m}}^2/{\rm{s}}} ]{\text{\ exp\ }}( {\frac{{378[ {\frac{{{\rm{kJ}}}{{{\rm{mol}}} ]}}{{RT}}} )$. This provides an estimate of ∼30 nm for the diffusion length under typical sintering conditions (2 h at 1200°C). Although Ti and Ge have similar diffusivities in SiO2 glass at low concentrations, GeO2 was found to be much more mobile during the sintering of printed GeO2:SiO2 green bodies. This was evident in glasses with phase separated GeO2 regions over length scales of ∼10 µm and in experiments involving binary xerogel films in which GeO2 migrated over ∼10 µm through cracked, porous SiO2 layers. Large phase separated regions and long transport lengths in GeO2:SiO2 suggest that the transport of GeO2 occurs prior to the densification of the SiO2 matrix via an alternative mechanism such as capillary flow. These results inform important considerations in the design of index modifying inks for the direct ink write process, namely initial precursor phase, mutual solubility with the base SiO2 glass, and mass transport throughout the sintering process.</description><subject>Backscattering</subject><subject>Capillary flow</subject><subject>Densification</subject><subject>Design modifications</subject><subject>Diffusion length</subject><subject>diffusion/diffusivity</subject><subject>germanates</subject><subject>Germanium oxides</subject><subject>Glass</subject><subject>Inks</subject><subject>Interdiffusion</subject><subject>Low concentrations</subject><subject>Mass transport</subject><subject>MATERIALS SCIENCE</subject><subject>Melting points</subject><subject>Precursors</subject><subject>silica</subject><subject>Silicon dioxide</subject><subject>sinter/sintering</subject><subject>Sintering</subject><subject>Sintering (powder metallurgy)</subject><subject>Solubility</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><subject>Xerogels</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo1UE1PAjEUbIwmInrxFzR6XmxfP7brjRBADIaDe29Kt2gRu9guIfx7C-gc3nuTTCbzBqF7SgY042ltrBtQxQEuUI8KQQuoqLxEPUIIFKUCco1uUlpnSivFe2j2ZlLCXTQhbdvYYR_w0gcTD7j2C3h-zwOb0OCp-2eNj84ehV94H33n8McmW7h0i65WZpPc3d_uo3oyrkcvxXwxnY2G86IFpaBQnIJbNVJJYEwQI6WsFCllaZfclMxysYKqqYRrOBhuHXOGZXBneUNLwfro4Wzbps7rZHMC-2nbEHIoTZUsBZdZ9HgWbWP7s3Op0-t2F0OOpUGKHEGxkxU9q_Z-4w56G_13flxToo9d6mOX-tSlfh2OxqeL_QJq72XW</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Lange, Andrew P.</creator><creator>Sasan, Koroush</creator><creator>Bayu Aji, Leonardus Bimo</creator><creator>Yee, Timothy Y.</creator><creator>Ha, Jungmin</creator><creator>Ryerson, F. J.</creator><creator>Remulla, Gabriela</creator><creator>Dylla‐Spears, Rebecca</creator><general>Wiley Subscription Services, Inc</general><general>American Ceramic Society</general><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6762-0736</orcidid><orcidid>https://orcid.org/0000000267620736</orcidid></search><sort><creationdate>202207</creationdate><title>Mass transport in binary TiO2:SiO2 and GeO2:SiO2 direct ink write glasses</title><author>Lange, Andrew P. ; Sasan, Koroush ; Bayu Aji, Leonardus Bimo ; Yee, Timothy Y. ; Ha, Jungmin ; Ryerson, F. J. ; Remulla, Gabriela ; Dylla‐Spears, Rebecca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o2882-8412efd68623350a666980767cb4a73c45f29d95ed42a4ce3ea33334ec4d1753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Backscattering</topic><topic>Capillary flow</topic><topic>Densification</topic><topic>Design modifications</topic><topic>Diffusion length</topic><topic>diffusion/diffusivity</topic><topic>germanates</topic><topic>Germanium oxides</topic><topic>Glass</topic><topic>Inks</topic><topic>Interdiffusion</topic><topic>Low concentrations</topic><topic>Mass transport</topic><topic>MATERIALS SCIENCE</topic><topic>Melting points</topic><topic>Precursors</topic><topic>silica</topic><topic>Silicon dioxide</topic><topic>sinter/sintering</topic><topic>Sintering</topic><topic>Sintering (powder metallurgy)</topic><topic>Solubility</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><topic>Xerogels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lange, Andrew P.</creatorcontrib><creatorcontrib>Sasan, Koroush</creatorcontrib><creatorcontrib>Bayu Aji, Leonardus Bimo</creatorcontrib><creatorcontrib>Yee, Timothy Y.</creatorcontrib><creatorcontrib>Ha, Jungmin</creatorcontrib><creatorcontrib>Ryerson, F. J.</creatorcontrib><creatorcontrib>Remulla, Gabriela</creatorcontrib><creatorcontrib>Dylla‐Spears, Rebecca</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lange, Andrew P.</au><au>Sasan, Koroush</au><au>Bayu Aji, Leonardus Bimo</au><au>Yee, Timothy Y.</au><au>Ha, Jungmin</au><au>Ryerson, F. J.</au><au>Remulla, Gabriela</au><au>Dylla‐Spears, Rebecca</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mass transport in binary TiO2:SiO2 and GeO2:SiO2 direct ink write glasses</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2022-07</date><risdate>2022</risdate><volume>105</volume><issue>7</issue><spage>4681</spage><epage>4690</epage><pages>4681-4690</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>The mass transport mechanisms of Ti in TiO2:SiO2 and Ge in GeO2:SiO2 direct ink write, additively manufactured glasses were studied. Due to the low solubility of Ti in SiO2 and high melting point of TiO2 relative to SiO2, Ti transport was found to occur via solid state interdiffusion between adjoining SiO2 and TiO2 precursor particles. The diffusivity of titanium in SiO2 measured over typical sintering temperatures (1000–1300°C) using Rutherford backscattering spectrometry was D=9.1×10−7[m2/s]exp(378[kJmol]RT)$D\ = \ 9.1{\rm{\ }} \times {10^{ - 7}}{\rm{\ }}[ {{\rm{m}}^2/{\rm{s}}} ]{\text{\ exp\ }}( {\frac{{378[ {\frac{{{\rm{kJ}}}{{{\rm{mol}}} ]}}{{RT}}} )$. This provides an estimate of ∼30 nm for the diffusion length under typical sintering conditions (2 h at 1200°C). Although Ti and Ge have similar diffusivities in SiO2 glass at low concentrations, GeO2 was found to be much more mobile during the sintering of printed GeO2:SiO2 green bodies. This was evident in glasses with phase separated GeO2 regions over length scales of ∼10 µm and in experiments involving binary xerogel films in which GeO2 migrated over ∼10 µm through cracked, porous SiO2 layers. Large phase separated regions and long transport lengths in GeO2:SiO2 suggest that the transport of GeO2 occurs prior to the densification of the SiO2 matrix via an alternative mechanism such as capillary flow. These results inform important considerations in the design of index modifying inks for the direct ink write process, namely initial precursor phase, mutual solubility with the base SiO2 glass, and mass transport throughout the sintering process.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.18422</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6762-0736</orcidid><orcidid>https://orcid.org/0000000267620736</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2022-07, Vol.105 (7), p.4681-4690 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_osti_scitechconnect_1867546 |
source | Access via Wiley Online Library |
subjects | Backscattering Capillary flow Densification Design modifications Diffusion length diffusion/diffusivity germanates Germanium oxides Glass Inks Interdiffusion Low concentrations Mass transport MATERIALS SCIENCE Melting points Precursors silica Silicon dioxide sinter/sintering Sintering Sintering (powder metallurgy) Solubility Titanium Titanium dioxide Xerogels |
title | Mass transport in binary TiO2:SiO2 and GeO2:SiO2 direct ink write glasses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A06%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mass%20transport%20in%20binary%20TiO2:SiO2%20and%20GeO2:SiO2%20direct%20ink%20write%20glasses&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Lange,%20Andrew%20P.&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2022-07&rft.volume=105&rft.issue=7&rft.spage=4681&rft.epage=4690&rft.pages=4681-4690&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.18422&rft_dat=%3Cproquest_osti_%3E2658418375%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2658418375&rft_id=info:pmid/&rfr_iscdi=true |