The case for data science in experimental chemistry: examples and recommendations

The physical sciences community is increasingly taking advantage of the possibilities offered by modern data science to solve problems in experimental chemistry and potentially to change the way we design, conduct and understand results from experiments. Successfully exploiting these opportunities i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature reviews. Chemistry 2022-05, Vol.6 (5), p.357-370
Hauptverfasser: Yano, Junko, Gaffney, Kelly J., Gregoire, John, Hung, Linda, Ourmazd, Abbas, Schrier, Joshua, Sethian, James A., Toma, Francesca M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 370
container_issue 5
container_start_page 357
container_title Nature reviews. Chemistry
container_volume 6
creator Yano, Junko
Gaffney, Kelly J.
Gregoire, John
Hung, Linda
Ourmazd, Abbas
Schrier, Joshua
Sethian, James A.
Toma, Francesca M.
description The physical sciences community is increasingly taking advantage of the possibilities offered by modern data science to solve problems in experimental chemistry and potentially to change the way we design, conduct and understand results from experiments. Successfully exploiting these opportunities involves considerable challenges. In this Expert Recommendation, we focus on experimental co-design and its importance to experimental chemistry. We provide examples of how data science is changing the way we conduct experiments, and we outline opportunities for further integration of data science and experimental chemistry to advance these fields. Our recommendations include establishing stronger links between chemists and data scientists; developing chemistry-specific data science methods; integrating algorithms, software and hardware to ‘co-design’ chemistry experiments from inception; and combining diverse and disparate data sources into a data network for chemistry research. Modern data science can help to address challenges in experimental chemistry. This Expert Recommendation describes examples of how data science is changing the way we conduct experiments and outlines opportunities for further integration of data science and experimental chemistry to advance these fields.
doi_str_mv 10.1038/s41570-022-00382-w
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1866566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807916006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-c862258a91df66a8c08022ec5805d2b673539f4a3356655075298230ec146c593</originalsourceid><addsrcrecordid>eNp9kUtP3DAUha2qqCCYP9BFZbWbbgLXduzY7CpUHhISQoK15XFuOkGJPbUzGvj3eAhtEYuu_PrOsY8PIZ8ZHDMQ-iTXTDZQAecVlDWvth_IARemqYSQ-uOb-T5Z5PwAAMyI2jTmE9kXDWONEeyA3N6tkHqXkXYx0dZNjmbfY_BI-0DxcY2pHzFMbqB-hWOfp_R0WvbduB4wUxdamtDHsTBF3MeQj8he54aMi9fxkNyf_7w7u6yuby6uzn5cV76u1VR5rTiX2hnWdko57UGXLOilBtnypWqEFKarXUmglJTQSG40F4Ce1cpLIw7J19k35qm35dET-pWPIaCfLNNFpFSBvs_QOsXfG8yTLRE8DoMLGDfZcg2NYQpgh357hz7ETQolguVKcaZB8x3FZ8qnmHPCzq7LB7n0ZBnYXTF2LsaWMPalGLstoi-v1pvliO1fyZ8aCiBmIJej8AvTv7v_Y_sMYlKWQg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2662180826</pqid></control><display><type>article</type><title>The case for data science in experimental chemistry: examples and recommendations</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yano, Junko ; Gaffney, Kelly J. ; Gregoire, John ; Hung, Linda ; Ourmazd, Abbas ; Schrier, Joshua ; Sethian, James A. ; Toma, Francesca M.</creator><creatorcontrib>Yano, Junko ; Gaffney, Kelly J. ; Gregoire, John ; Hung, Linda ; Ourmazd, Abbas ; Schrier, Joshua ; Sethian, James A. ; Toma, Francesca M. ; SLAC National Accelerator Lab., Menlo Park, CA (United States) ; Univ. of Wisconsin, Milwaukee, WI (United States)</creatorcontrib><description>The physical sciences community is increasingly taking advantage of the possibilities offered by modern data science to solve problems in experimental chemistry and potentially to change the way we design, conduct and understand results from experiments. Successfully exploiting these opportunities involves considerable challenges. In this Expert Recommendation, we focus on experimental co-design and its importance to experimental chemistry. We provide examples of how data science is changing the way we conduct experiments, and we outline opportunities for further integration of data science and experimental chemistry to advance these fields. Our recommendations include establishing stronger links between chemists and data scientists; developing chemistry-specific data science methods; integrating algorithms, software and hardware to ‘co-design’ chemistry experiments from inception; and combining diverse and disparate data sources into a data network for chemistry research. Modern data science can help to address challenges in experimental chemistry. This Expert Recommendation describes examples of how data science is changing the way we conduct experiments and outlines opportunities for further integration of data science and experimental chemistry to advance these fields.</description><identifier>ISSN: 2397-3358</identifier><identifier>EISSN: 2397-3358</identifier><identifier>DOI: 10.1038/s41570-022-00382-w</identifier><identifier>PMID: 37117931</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/440 ; 639/638/675 ; 639/638/77 ; Algorithms ; Analytical Chemistry ; Biochemistry ; Catalysis ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Chemists ; Co-design ; Data science ; Energy ; Experiments ; Expert Recommendation ; Inorganic Chemistry ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Organic Chemistry ; Physical Chemistry ; Physical sciences</subject><ispartof>Nature reviews. Chemistry, 2022-05, Vol.6 (5), p.357-370</ispartof><rights>Springer Nature Limited 2022</rights><rights>2022. Springer Nature Limited.</rights><rights>Springer Nature Limited 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-c862258a91df66a8c08022ec5805d2b673539f4a3356655075298230ec146c593</citedby><cites>FETCH-LOGICAL-c446t-c862258a91df66a8c08022ec5805d2b673539f4a3356655075298230ec146c593</cites><orcidid>0000-0001-6308-9071 ; 0000-0002-0525-6465 ; 0000-0002-1578-6152 ; 0000-0003-2332-0798 ; 0000-0002-2071-1657 ; 0000-0002-2863-5265 ; 0000-0002-7250-7789 ; 0000-0001-9946-3889 ; 0000000215786152 ; 0000000220711657 ; 0000000272507789 ; 0000000323320798 ; 0000000228635265 ; 0000000199463889 ; 0000000163089071 ; 0000000205256465</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41570-022-00382-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41570-022-00382-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37117931$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1866566$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yano, Junko</creatorcontrib><creatorcontrib>Gaffney, Kelly J.</creatorcontrib><creatorcontrib>Gregoire, John</creatorcontrib><creatorcontrib>Hung, Linda</creatorcontrib><creatorcontrib>Ourmazd, Abbas</creatorcontrib><creatorcontrib>Schrier, Joshua</creatorcontrib><creatorcontrib>Sethian, James A.</creatorcontrib><creatorcontrib>Toma, Francesca M.</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Univ. of Wisconsin, Milwaukee, WI (United States)</creatorcontrib><title>The case for data science in experimental chemistry: examples and recommendations</title><title>Nature reviews. Chemistry</title><addtitle>Nat Rev Chem</addtitle><addtitle>Nat Rev Chem</addtitle><description>The physical sciences community is increasingly taking advantage of the possibilities offered by modern data science to solve problems in experimental chemistry and potentially to change the way we design, conduct and understand results from experiments. Successfully exploiting these opportunities involves considerable challenges. In this Expert Recommendation, we focus on experimental co-design and its importance to experimental chemistry. We provide examples of how data science is changing the way we conduct experiments, and we outline opportunities for further integration of data science and experimental chemistry to advance these fields. Our recommendations include establishing stronger links between chemists and data scientists; developing chemistry-specific data science methods; integrating algorithms, software and hardware to ‘co-design’ chemistry experiments from inception; and combining diverse and disparate data sources into a data network for chemistry research. Modern data science can help to address challenges in experimental chemistry. This Expert Recommendation describes examples of how data science is changing the way we conduct experiments and outlines opportunities for further integration of data science and experimental chemistry to advance these fields.</description><subject>639/638/440</subject><subject>639/638/675</subject><subject>639/638/77</subject><subject>Algorithms</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Chemists</subject><subject>Co-design</subject><subject>Data science</subject><subject>Energy</subject><subject>Experiments</subject><subject>Expert Recommendation</subject><subject>Inorganic Chemistry</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Physical sciences</subject><issn>2397-3358</issn><issn>2397-3358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kUtP3DAUha2qqCCYP9BFZbWbbgLXduzY7CpUHhISQoK15XFuOkGJPbUzGvj3eAhtEYuu_PrOsY8PIZ8ZHDMQ-iTXTDZQAecVlDWvth_IARemqYSQ-uOb-T5Z5PwAAMyI2jTmE9kXDWONEeyA3N6tkHqXkXYx0dZNjmbfY_BI-0DxcY2pHzFMbqB-hWOfp_R0WvbduB4wUxdamtDHsTBF3MeQj8he54aMi9fxkNyf_7w7u6yuby6uzn5cV76u1VR5rTiX2hnWdko57UGXLOilBtnypWqEFKarXUmglJTQSG40F4Ce1cpLIw7J19k35qm35dET-pWPIaCfLNNFpFSBvs_QOsXfG8yTLRE8DoMLGDfZcg2NYQpgh357hz7ETQolguVKcaZB8x3FZ8qnmHPCzq7LB7n0ZBnYXTF2LsaWMPalGLstoi-v1pvliO1fyZ8aCiBmIJej8AvTv7v_Y_sMYlKWQg</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Yano, Junko</creator><creator>Gaffney, Kelly J.</creator><creator>Gregoire, John</creator><creator>Hung, Linda</creator><creator>Ourmazd, Abbas</creator><creator>Schrier, Joshua</creator><creator>Sethian, James A.</creator><creator>Toma, Francesca M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Springer Nature</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6308-9071</orcidid><orcidid>https://orcid.org/0000-0002-0525-6465</orcidid><orcidid>https://orcid.org/0000-0002-1578-6152</orcidid><orcidid>https://orcid.org/0000-0003-2332-0798</orcidid><orcidid>https://orcid.org/0000-0002-2071-1657</orcidid><orcidid>https://orcid.org/0000-0002-2863-5265</orcidid><orcidid>https://orcid.org/0000-0002-7250-7789</orcidid><orcidid>https://orcid.org/0000-0001-9946-3889</orcidid><orcidid>https://orcid.org/0000000215786152</orcidid><orcidid>https://orcid.org/0000000220711657</orcidid><orcidid>https://orcid.org/0000000272507789</orcidid><orcidid>https://orcid.org/0000000323320798</orcidid><orcidid>https://orcid.org/0000000228635265</orcidid><orcidid>https://orcid.org/0000000199463889</orcidid><orcidid>https://orcid.org/0000000163089071</orcidid><orcidid>https://orcid.org/0000000205256465</orcidid></search><sort><creationdate>20220501</creationdate><title>The case for data science in experimental chemistry: examples and recommendations</title><author>Yano, Junko ; Gaffney, Kelly J. ; Gregoire, John ; Hung, Linda ; Ourmazd, Abbas ; Schrier, Joshua ; Sethian, James A. ; Toma, Francesca M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-c862258a91df66a8c08022ec5805d2b673539f4a3356655075298230ec146c593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/638/440</topic><topic>639/638/675</topic><topic>639/638/77</topic><topic>Algorithms</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Chemists</topic><topic>Co-design</topic><topic>Data science</topic><topic>Energy</topic><topic>Experiments</topic><topic>Expert Recommendation</topic><topic>Inorganic Chemistry</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Physical sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yano, Junko</creatorcontrib><creatorcontrib>Gaffney, Kelly J.</creatorcontrib><creatorcontrib>Gregoire, John</creatorcontrib><creatorcontrib>Hung, Linda</creatorcontrib><creatorcontrib>Ourmazd, Abbas</creatorcontrib><creatorcontrib>Schrier, Joshua</creatorcontrib><creatorcontrib>Sethian, James A.</creatorcontrib><creatorcontrib>Toma, Francesca M.</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Univ. of Wisconsin, Milwaukee, WI (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature reviews. Chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yano, Junko</au><au>Gaffney, Kelly J.</au><au>Gregoire, John</au><au>Hung, Linda</au><au>Ourmazd, Abbas</au><au>Schrier, Joshua</au><au>Sethian, James A.</au><au>Toma, Francesca M.</au><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><aucorp>Univ. of Wisconsin, Milwaukee, WI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The case for data science in experimental chemistry: examples and recommendations</atitle><jtitle>Nature reviews. Chemistry</jtitle><stitle>Nat Rev Chem</stitle><addtitle>Nat Rev Chem</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>6</volume><issue>5</issue><spage>357</spage><epage>370</epage><pages>357-370</pages><issn>2397-3358</issn><eissn>2397-3358</eissn><abstract>The physical sciences community is increasingly taking advantage of the possibilities offered by modern data science to solve problems in experimental chemistry and potentially to change the way we design, conduct and understand results from experiments. Successfully exploiting these opportunities involves considerable challenges. In this Expert Recommendation, we focus on experimental co-design and its importance to experimental chemistry. We provide examples of how data science is changing the way we conduct experiments, and we outline opportunities for further integration of data science and experimental chemistry to advance these fields. Our recommendations include establishing stronger links between chemists and data scientists; developing chemistry-specific data science methods; integrating algorithms, software and hardware to ‘co-design’ chemistry experiments from inception; and combining diverse and disparate data sources into a data network for chemistry research. Modern data science can help to address challenges in experimental chemistry. This Expert Recommendation describes examples of how data science is changing the way we conduct experiments and outlines opportunities for further integration of data science and experimental chemistry to advance these fields.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37117931</pmid><doi>10.1038/s41570-022-00382-w</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6308-9071</orcidid><orcidid>https://orcid.org/0000-0002-0525-6465</orcidid><orcidid>https://orcid.org/0000-0002-1578-6152</orcidid><orcidid>https://orcid.org/0000-0003-2332-0798</orcidid><orcidid>https://orcid.org/0000-0002-2071-1657</orcidid><orcidid>https://orcid.org/0000-0002-2863-5265</orcidid><orcidid>https://orcid.org/0000-0002-7250-7789</orcidid><orcidid>https://orcid.org/0000-0001-9946-3889</orcidid><orcidid>https://orcid.org/0000000215786152</orcidid><orcidid>https://orcid.org/0000000220711657</orcidid><orcidid>https://orcid.org/0000000272507789</orcidid><orcidid>https://orcid.org/0000000323320798</orcidid><orcidid>https://orcid.org/0000000228635265</orcidid><orcidid>https://orcid.org/0000000199463889</orcidid><orcidid>https://orcid.org/0000000163089071</orcidid><orcidid>https://orcid.org/0000000205256465</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2397-3358
ispartof Nature reviews. Chemistry, 2022-05, Vol.6 (5), p.357-370
issn 2397-3358
2397-3358
language eng
recordid cdi_osti_scitechconnect_1866566
source SpringerLink Journals - AutoHoldings
subjects 639/638/440
639/638/675
639/638/77
Algorithms
Analytical Chemistry
Biochemistry
Catalysis
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Chemists
Co-design
Data science
Energy
Experiments
Expert Recommendation
Inorganic Chemistry
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Organic Chemistry
Physical Chemistry
Physical sciences
title The case for data science in experimental chemistry: examples and recommendations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A17%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20case%20for%20data%20science%20in%20experimental%20chemistry:%20examples%20and%20recommendations&rft.jtitle=Nature%20reviews.%20Chemistry&rft.au=Yano,%20Junko&rft.aucorp=SLAC%20National%20Accelerator%20Lab.,%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2022-05-01&rft.volume=6&rft.issue=5&rft.spage=357&rft.epage=370&rft.pages=357-370&rft.issn=2397-3358&rft.eissn=2397-3358&rft_id=info:doi/10.1038/s41570-022-00382-w&rft_dat=%3Cproquest_osti_%3E2807916006%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2662180826&rft_id=info:pmid/37117931&rfr_iscdi=true