Crack detection in crystalline silicon solar cells using dark-field imaging

The high capital expenditure (capex) necessary to manufacture crystalline silicon PV modules negatively affects the levelized cost of electricity (¢/kWh) and critically impacts the rate at which the PV industry can scale up. Wafer, cell, and module fabrication with thin free-standing silicon wafers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy procedia 2017-09, Vol.124, p.526-531
Hauptverfasser: Wieghold, Sarah, Morishige, Ashley E., Meyer, Luke, Buonassisi, Tonio, Sachs, Emanuel M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 531
container_issue
container_start_page 526
container_title Energy procedia
container_volume 124
creator Wieghold, Sarah
Morishige, Ashley E.
Meyer, Luke
Buonassisi, Tonio
Sachs, Emanuel M.
description The high capital expenditure (capex) necessary to manufacture crystalline silicon PV modules negatively affects the levelized cost of electricity (¢/kWh) and critically impacts the rate at which the PV industry can scale up. Wafer, cell, and module fabrication with thin free-standing silicon wafers is one key to reduce capex. Thin wafers reduce capex associated with silicon refining and wafer fabrication, which together sum to 58% of the total capex of silicon module manufacturing. In addition, thin wafers directly and significantly reduce variable costs. However, introducing 50 μm thin free-standing wafers into today’s manufacturing lines result in cracking, creating a yield-based disincentive. Due to the brittle nature of silicon, wafer breakage is the major concern due to the high stress that is induced during processes in manufacturing lines. In this paper, we describe an improved method for edge micro-crack detection that can help enable low-capex, thin free-standing Si wafers. We present a method of detecting and measuring cracks along wafer edges by using a dark-field IR scattering imaging technique which enables detection of edge cracks at the micron scale.
doi_str_mv 10.1016/j.egypro.2017.09.252
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1865938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1876610217341838</els_id><sourcerecordid>S1876610217341838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-e041b88c280b253b09dc08b79f13bb597665bbb84c297e80166d8e74f45ce2133</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoPPATvrS_pR5KLIIuu4oIXPYcmfV2zG9slqcL-e1PqwZOn9xhmhpkh5JpBzoDVt7sct8dDGHIOTOSgcl7xE7JgUtRZzYCf_vnPyUWMOwABIMsFeVmFxu5piyPa0Q09dT214RjHxnvXI43OO5vgOPgmUIveR_oVXb-lbRP2WefQt9R9NtsEXZKzrvERr37vkrw_PrytnrLN6_p5db_JbCHUmCGUzEhpuQTDq8KAai1II1THCmMqJeq6MsbI0nIlUKaCdStRlF1ZWeSsKJbkZvYd4uh0tC5l_0gh-1RBM1lXqpCJVM4kG4YYA3b6EFLOcNQM9LSa3ul5NT2tpkHptFqS3c0yTAW-HYbJH3uLrQuTfTu4_w1-AAVUd8g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Crack detection in crystalline silicon solar cells using dark-field imaging</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wieghold, Sarah ; Morishige, Ashley E. ; Meyer, Luke ; Buonassisi, Tonio ; Sachs, Emanuel M.</creator><creatorcontrib>Wieghold, Sarah ; Morishige, Ashley E. ; Meyer, Luke ; Buonassisi, Tonio ; Sachs, Emanuel M. ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><description>The high capital expenditure (capex) necessary to manufacture crystalline silicon PV modules negatively affects the levelized cost of electricity (¢/kWh) and critically impacts the rate at which the PV industry can scale up. Wafer, cell, and module fabrication with thin free-standing silicon wafers is one key to reduce capex. Thin wafers reduce capex associated with silicon refining and wafer fabrication, which together sum to 58% of the total capex of silicon module manufacturing. In addition, thin wafers directly and significantly reduce variable costs. However, introducing 50 μm thin free-standing wafers into today’s manufacturing lines result in cracking, creating a yield-based disincentive. Due to the brittle nature of silicon, wafer breakage is the major concern due to the high stress that is induced during processes in manufacturing lines. In this paper, we describe an improved method for edge micro-crack detection that can help enable low-capex, thin free-standing Si wafers. We present a method of detecting and measuring cracks along wafer edges by using a dark-field IR scattering imaging technique which enables detection of edge cracks at the micron scale.</description><identifier>ISSN: 1876-6102</identifier><identifier>EISSN: 1876-6102</identifier><identifier>DOI: 10.1016/j.egypro.2017.09.252</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Capex ; dark-field imaging ; edge crack detection ; IR scattering ; polysilicon ; SOLAR ENERGY ; thin free-standing wafer</subject><ispartof>Energy procedia, 2017-09, Vol.124, p.526-531</ispartof><rights>2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-e041b88c280b253b09dc08b79f13bb597665bbb84c297e80166d8e74f45ce2133</citedby><cites>FETCH-LOGICAL-c379t-e041b88c280b253b09dc08b79f13bb597665bbb84c297e80166d8e74f45ce2133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.egypro.2017.09.252$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1865938$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wieghold, Sarah</creatorcontrib><creatorcontrib>Morishige, Ashley E.</creatorcontrib><creatorcontrib>Meyer, Luke</creatorcontrib><creatorcontrib>Buonassisi, Tonio</creatorcontrib><creatorcontrib>Sachs, Emanuel M.</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><title>Crack detection in crystalline silicon solar cells using dark-field imaging</title><title>Energy procedia</title><description>The high capital expenditure (capex) necessary to manufacture crystalline silicon PV modules negatively affects the levelized cost of electricity (¢/kWh) and critically impacts the rate at which the PV industry can scale up. Wafer, cell, and module fabrication with thin free-standing silicon wafers is one key to reduce capex. Thin wafers reduce capex associated with silicon refining and wafer fabrication, which together sum to 58% of the total capex of silicon module manufacturing. In addition, thin wafers directly and significantly reduce variable costs. However, introducing 50 μm thin free-standing wafers into today’s manufacturing lines result in cracking, creating a yield-based disincentive. Due to the brittle nature of silicon, wafer breakage is the major concern due to the high stress that is induced during processes in manufacturing lines. In this paper, we describe an improved method for edge micro-crack detection that can help enable low-capex, thin free-standing Si wafers. We present a method of detecting and measuring cracks along wafer edges by using a dark-field IR scattering imaging technique which enables detection of edge cracks at the micron scale.</description><subject>Capex</subject><subject>dark-field imaging</subject><subject>edge crack detection</subject><subject>IR scattering</subject><subject>polysilicon</subject><subject>SOLAR ENERGY</subject><subject>thin free-standing wafer</subject><issn>1876-6102</issn><issn>1876-6102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoPPATvrS_pR5KLIIuu4oIXPYcmfV2zG9slqcL-e1PqwZOn9xhmhpkh5JpBzoDVt7sct8dDGHIOTOSgcl7xE7JgUtRZzYCf_vnPyUWMOwABIMsFeVmFxu5piyPa0Q09dT214RjHxnvXI43OO5vgOPgmUIveR_oVXb-lbRP2WefQt9R9NtsEXZKzrvERr37vkrw_PrytnrLN6_p5db_JbCHUmCGUzEhpuQTDq8KAai1II1THCmMqJeq6MsbI0nIlUKaCdStRlF1ZWeSsKJbkZvYd4uh0tC5l_0gh-1RBM1lXqpCJVM4kG4YYA3b6EFLOcNQM9LSa3ul5NT2tpkHptFqS3c0yTAW-HYbJH3uLrQuTfTu4_w1-AAVUd8g</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Wieghold, Sarah</creator><creator>Morishige, Ashley E.</creator><creator>Meyer, Luke</creator><creator>Buonassisi, Tonio</creator><creator>Sachs, Emanuel M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>201709</creationdate><title>Crack detection in crystalline silicon solar cells using dark-field imaging</title><author>Wieghold, Sarah ; Morishige, Ashley E. ; Meyer, Luke ; Buonassisi, Tonio ; Sachs, Emanuel M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-e041b88c280b253b09dc08b79f13bb597665bbb84c297e80166d8e74f45ce2133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Capex</topic><topic>dark-field imaging</topic><topic>edge crack detection</topic><topic>IR scattering</topic><topic>polysilicon</topic><topic>SOLAR ENERGY</topic><topic>thin free-standing wafer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wieghold, Sarah</creatorcontrib><creatorcontrib>Morishige, Ashley E.</creatorcontrib><creatorcontrib>Meyer, Luke</creatorcontrib><creatorcontrib>Buonassisi, Tonio</creatorcontrib><creatorcontrib>Sachs, Emanuel M.</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Energy procedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wieghold, Sarah</au><au>Morishige, Ashley E.</au><au>Meyer, Luke</au><au>Buonassisi, Tonio</au><au>Sachs, Emanuel M.</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crack detection in crystalline silicon solar cells using dark-field imaging</atitle><jtitle>Energy procedia</jtitle><date>2017-09</date><risdate>2017</risdate><volume>124</volume><spage>526</spage><epage>531</epage><pages>526-531</pages><issn>1876-6102</issn><eissn>1876-6102</eissn><abstract>The high capital expenditure (capex) necessary to manufacture crystalline silicon PV modules negatively affects the levelized cost of electricity (¢/kWh) and critically impacts the rate at which the PV industry can scale up. Wafer, cell, and module fabrication with thin free-standing silicon wafers is one key to reduce capex. Thin wafers reduce capex associated with silicon refining and wafer fabrication, which together sum to 58% of the total capex of silicon module manufacturing. In addition, thin wafers directly and significantly reduce variable costs. However, introducing 50 μm thin free-standing wafers into today’s manufacturing lines result in cracking, creating a yield-based disincentive. Due to the brittle nature of silicon, wafer breakage is the major concern due to the high stress that is induced during processes in manufacturing lines. In this paper, we describe an improved method for edge micro-crack detection that can help enable low-capex, thin free-standing Si wafers. We present a method of detecting and measuring cracks along wafer edges by using a dark-field IR scattering imaging technique which enables detection of edge cracks at the micron scale.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.egypro.2017.09.252</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1876-6102
ispartof Energy procedia, 2017-09, Vol.124, p.526-531
issn 1876-6102
1876-6102
language eng
recordid cdi_osti_scitechconnect_1865938
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Capex
dark-field imaging
edge crack detection
IR scattering
polysilicon
SOLAR ENERGY
thin free-standing wafer
title Crack detection in crystalline silicon solar cells using dark-field imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A53%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crack%20detection%20in%20crystalline%20silicon%20solar%20cells%20using%20dark-field%20imaging&rft.jtitle=Energy%20procedia&rft.au=Wieghold,%20Sarah&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States)&rft.date=2017-09&rft.volume=124&rft.spage=526&rft.epage=531&rft.pages=526-531&rft.issn=1876-6102&rft.eissn=1876-6102&rft_id=info:doi/10.1016/j.egypro.2017.09.252&rft_dat=%3Celsevier_osti_%3ES1876610217341838%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1876610217341838&rfr_iscdi=true