Constraints on the Dense Matter Equation of State and Neutron Star Properties from NICER’s Mass–Radius Estimate of PSR J0740+6620 and Multimessenger Observations
In recent years our understanding of the dense matter equation of state (EOS) of neutron stars has significantly improved by analyzing multimessenger data from radio/X-ray pulsars, gravitational wave events, and from nuclear physics constraints. Here we study the additional impact on the EOS from th...
Gespeichert in:
Veröffentlicht in: | Astrophysical journal. Letters 2021-09, Vol.918 (2), p.L29, Article 29 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | L29 |
container_title | Astrophysical journal. Letters |
container_volume | 918 |
creator | Raaijmakers, G. Greif, S. K. Hebeler, K. Hinderer, T. Nissanke, S. Schwenk, A. Riley, T. E. Watts, A. L. Lattimer, J. M. Ho, W. C. G. |
description | In recent years our understanding of the dense matter equation of state (EOS) of neutron stars has significantly improved by analyzing multimessenger data from radio/X-ray pulsars, gravitational wave events, and from nuclear physics constraints. Here we study the additional impact on the EOS from the jointly estimated mass and radius of PSR J0740+6620, presented in Riley et al. by analyzing a combined data set from X-ray telescopes NICER and XMM-Newton. We employ two different high-density EOS parameterizations: a piecewise-polytropic (PP) model and a model based on the speed of sound in a neutron star (CS). At nuclear densities these are connected to microscopic calculations of neutron matter based on chiral effective field theory (EFT) interactions. In addition to the new NICER data for this heavy neutron star, we separately study constraints from the radio timing mass measurement of PSR J0740+6620, the gravitational wave events of binary neutron stars GW190425 and GW170817, and for the latter the associated kilonova AT2017gfo. By combining all these, and the NICER mass-radius estimate of PSR J0030+0451, we find the radius of a 1.4 M-circle dot neutron star to be constrained to the 95% credible ranges 12.33(-0.81)(+0.76) km (PP model) and 12.18(-0.79)(+0.56) km (CS model). In addition, we explore different chiral EFT calculations and show that the new NICER results provide tight constraints for the pressure of neutron star matter at around twice saturation density, which shows the power of these observations to constrain dense matter interactions at intermediate densities. |
doi_str_mv | 10.3847/2041-8213/ac089a |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_osti_scitechconnect_1864764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572262141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-323e2a7e8fba57787ce5d80ff073cf15e3db1843c3ac8962d8fd87b3422f11f53</originalsourceid><addsrcrecordid>eNqNUc1u1DAQjhBIlMKdowUSl7LUf4mdIwoLFG1_tIWz5ThjmtXWTm0HxK3vwIkH4MX6JDgbtFxA4uTRzPcz468onhL8ikkujinmZCEpYcfaYFnre8XBvnV_X-PyYfEoxg3GFFdEHhQ_G-9iCrp3KSLvULoC9AZcBHSqU4KAljejTn2eeIsuk06AtOvQGYwp5GbuBHQR_AAh9RCRDf4anZ00y_Xd7Y-YNWK8u_2-1l0_RrSMqb-eFLLUxeUafcCC46OqonineTpu8xxiBPc5G5-3EcKXnXd8XDywehvhye_3sPj0dvmxeb9Ynb87aV6vFoYLnhaMMqBagLStLoWQwkDZSWwtFsxYUgLrWiI5M0wbWVe0k7aTomWcUkuILdlh8WzW9XlVFU2fwFwZ7xyYpIisuKh4Bj2fQUPwNyPEpDZ-DC7vpWgpKK0o4SSj8IwywccYwKoh5OvDN0WwmhJTUyRqikfNiWXK0Uz5Cq232R2cgT0NY1zVJeeS5ApPBvL_0U2fdj_Z-NGlTH0xU3s__FleD5utqolUVK1orYbOZuDLvwD_ecAvb93GwQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572262141</pqid></control><display><type>article</type><title>Constraints on the Dense Matter Equation of State and Neutron Star Properties from NICER’s Mass–Radius Estimate of PSR J0740+6620 and Multimessenger Observations</title><source>Institute of Physics Open Access Journal Titles</source><creator>Raaijmakers, G. ; Greif, S. K. ; Hebeler, K. ; Hinderer, T. ; Nissanke, S. ; Schwenk, A. ; Riley, T. E. ; Watts, A. L. ; Lattimer, J. M. ; Ho, W. C. G.</creator><creatorcontrib>Raaijmakers, G. ; Greif, S. K. ; Hebeler, K. ; Hinderer, T. ; Nissanke, S. ; Schwenk, A. ; Riley, T. E. ; Watts, A. L. ; Lattimer, J. M. ; Ho, W. C. G. ; Research Foundation of New York, NY (United States)</creatorcontrib><description>In recent years our understanding of the dense matter equation of state (EOS) of neutron stars has significantly improved by analyzing multimessenger data from radio/X-ray pulsars, gravitational wave events, and from nuclear physics constraints. Here we study the additional impact on the EOS from the jointly estimated mass and radius of PSR J0740+6620, presented in Riley et al. by analyzing a combined data set from X-ray telescopes NICER and XMM-Newton. We employ two different high-density EOS parameterizations: a piecewise-polytropic (PP) model and a model based on the speed of sound in a neutron star (CS). At nuclear densities these are connected to microscopic calculations of neutron matter based on chiral effective field theory (EFT) interactions. In addition to the new NICER data for this heavy neutron star, we separately study constraints from the radio timing mass measurement of PSR J0740+6620, the gravitational wave events of binary neutron stars GW190425 and GW170817, and for the latter the associated kilonova AT2017gfo. By combining all these, and the NICER mass-radius estimate of PSR J0030+0451, we find the radius of a 1.4 M-circle dot neutron star to be constrained to the 95% credible ranges 12.33(-0.81)(+0.76) km (PP model) and 12.18(-0.79)(+0.56) km (CS model). In addition, we explore different chiral EFT calculations and show that the new NICER results provide tight constraints for the pressure of neutron star matter at around twice saturation density, which shows the power of these observations to constrain dense matter interactions at intermediate densities.</description><identifier>ISSN: 2041-8205</identifier><identifier>EISSN: 2041-8213</identifier><identifier>DOI: 10.3847/2041-8213/ac089a</identifier><language>eng</language><publisher>BRISTOL: The American Astronomical Society</publisher><subject>Astronomy & Astrophysics ; ASTRONOMY AND ASTROPHYSICS ; Bayesian statistics ; Binary stars ; Compact objects ; Constraints ; Data analysis ; dense matter ; Density ; equation of state ; Equations of state ; Field theory ; Gravitational wave astronomy ; Gravitational waves ; Modelling ; Neutron star cores ; Neutron stars ; Neutrons ; Nuclear astrophysics ; Nuclear physics ; Physical Sciences ; Pulsars ; Science & Technology ; stars: neutron ; Telescopes ; X ray telescopes ; X-ray astronomy ; X-rays: stars ; XMM (spacecraft)</subject><ispartof>Astrophysical journal. Letters, 2021-09, Vol.918 (2), p.L29, Article 29</ispartof><rights>2021. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Sep 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>207</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000695448100001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c474t-323e2a7e8fba57787ce5d80ff073cf15e3db1843c3ac8962d8fd87b3422f11f53</citedby><cites>FETCH-LOGICAL-c474t-323e2a7e8fba57787ce5d80ff073cf15e3db1843c3ac8962d8fd87b3422f11f53</cites><orcidid>0000-0002-6089-6836 ; 0000-0001-8641-2062 ; 0000-0001-8027-4076 ; 0000-0002-9397-786X ; 0000-0003-0640-1801 ; 0000-0002-3394-6105 ; 0000-0002-1009-2354 ; 0000-0001-6573-7773 ; 0000-0001-9313-0493 ; 0000-0002-5907-4552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/ac089a/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,315,782,786,887,27933,27934,38877,38899,39267,53849,53876</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/ac089a$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1864764$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Raaijmakers, G.</creatorcontrib><creatorcontrib>Greif, S. K.</creatorcontrib><creatorcontrib>Hebeler, K.</creatorcontrib><creatorcontrib>Hinderer, T.</creatorcontrib><creatorcontrib>Nissanke, S.</creatorcontrib><creatorcontrib>Schwenk, A.</creatorcontrib><creatorcontrib>Riley, T. E.</creatorcontrib><creatorcontrib>Watts, A. L.</creatorcontrib><creatorcontrib>Lattimer, J. M.</creatorcontrib><creatorcontrib>Ho, W. C. G.</creatorcontrib><creatorcontrib>Research Foundation of New York, NY (United States)</creatorcontrib><title>Constraints on the Dense Matter Equation of State and Neutron Star Properties from NICER’s Mass–Radius Estimate of PSR J0740+6620 and Multimessenger Observations</title><title>Astrophysical journal. Letters</title><addtitle>APJL</addtitle><addtitle>ASTROPHYS J LETT</addtitle><addtitle>Astrophys. J. Lett</addtitle><description>In recent years our understanding of the dense matter equation of state (EOS) of neutron stars has significantly improved by analyzing multimessenger data from radio/X-ray pulsars, gravitational wave events, and from nuclear physics constraints. Here we study the additional impact on the EOS from the jointly estimated mass and radius of PSR J0740+6620, presented in Riley et al. by analyzing a combined data set from X-ray telescopes NICER and XMM-Newton. We employ two different high-density EOS parameterizations: a piecewise-polytropic (PP) model and a model based on the speed of sound in a neutron star (CS). At nuclear densities these are connected to microscopic calculations of neutron matter based on chiral effective field theory (EFT) interactions. In addition to the new NICER data for this heavy neutron star, we separately study constraints from the radio timing mass measurement of PSR J0740+6620, the gravitational wave events of binary neutron stars GW190425 and GW170817, and for the latter the associated kilonova AT2017gfo. By combining all these, and the NICER mass-radius estimate of PSR J0030+0451, we find the radius of a 1.4 M-circle dot neutron star to be constrained to the 95% credible ranges 12.33(-0.81)(+0.76) km (PP model) and 12.18(-0.79)(+0.56) km (CS model). In addition, we explore different chiral EFT calculations and show that the new NICER results provide tight constraints for the pressure of neutron star matter at around twice saturation density, which shows the power of these observations to constrain dense matter interactions at intermediate densities.</description><subject>Astronomy & Astrophysics</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Bayesian statistics</subject><subject>Binary stars</subject><subject>Compact objects</subject><subject>Constraints</subject><subject>Data analysis</subject><subject>dense matter</subject><subject>Density</subject><subject>equation of state</subject><subject>Equations of state</subject><subject>Field theory</subject><subject>Gravitational wave astronomy</subject><subject>Gravitational waves</subject><subject>Modelling</subject><subject>Neutron star cores</subject><subject>Neutron stars</subject><subject>Neutrons</subject><subject>Nuclear astrophysics</subject><subject>Nuclear physics</subject><subject>Physical Sciences</subject><subject>Pulsars</subject><subject>Science & Technology</subject><subject>stars: neutron</subject><subject>Telescopes</subject><subject>X ray telescopes</subject><subject>X-ray astronomy</subject><subject>X-rays: stars</subject><subject>XMM (spacecraft)</subject><issn>2041-8205</issn><issn>2041-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNUc1u1DAQjhBIlMKdowUSl7LUf4mdIwoLFG1_tIWz5ThjmtXWTm0HxK3vwIkH4MX6JDgbtFxA4uTRzPcz468onhL8ikkujinmZCEpYcfaYFnre8XBvnV_X-PyYfEoxg3GFFdEHhQ_G-9iCrp3KSLvULoC9AZcBHSqU4KAljejTn2eeIsuk06AtOvQGYwp5GbuBHQR_AAh9RCRDf4anZ00y_Xd7Y-YNWK8u_2-1l0_RrSMqb-eFLLUxeUafcCC46OqonineTpu8xxiBPc5G5-3EcKXnXd8XDywehvhye_3sPj0dvmxeb9Ynb87aV6vFoYLnhaMMqBagLStLoWQwkDZSWwtFsxYUgLrWiI5M0wbWVe0k7aTomWcUkuILdlh8WzW9XlVFU2fwFwZ7xyYpIisuKh4Bj2fQUPwNyPEpDZ-DC7vpWgpKK0o4SSj8IwywccYwKoh5OvDN0WwmhJTUyRqikfNiWXK0Uz5Cq232R2cgT0NY1zVJeeS5ApPBvL_0U2fdj_Z-NGlTH0xU3s__FleD5utqolUVK1orYbOZuDLvwD_ecAvb93GwQ</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Raaijmakers, G.</creator><creator>Greif, S. K.</creator><creator>Hebeler, K.</creator><creator>Hinderer, T.</creator><creator>Nissanke, S.</creator><creator>Schwenk, A.</creator><creator>Riley, T. E.</creator><creator>Watts, A. L.</creator><creator>Lattimer, J. M.</creator><creator>Ho, W. C. G.</creator><general>The American Astronomical Society</general><general>IOP Publishing Ltd</general><general>IOP Publishing</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6089-6836</orcidid><orcidid>https://orcid.org/0000-0001-8641-2062</orcidid><orcidid>https://orcid.org/0000-0001-8027-4076</orcidid><orcidid>https://orcid.org/0000-0002-9397-786X</orcidid><orcidid>https://orcid.org/0000-0003-0640-1801</orcidid><orcidid>https://orcid.org/0000-0002-3394-6105</orcidid><orcidid>https://orcid.org/0000-0002-1009-2354</orcidid><orcidid>https://orcid.org/0000-0001-6573-7773</orcidid><orcidid>https://orcid.org/0000-0001-9313-0493</orcidid><orcidid>https://orcid.org/0000-0002-5907-4552</orcidid></search><sort><creationdate>20210901</creationdate><title>Constraints on the Dense Matter Equation of State and Neutron Star Properties from NICER’s Mass–Radius Estimate of PSR J0740+6620 and Multimessenger Observations</title><author>Raaijmakers, G. ; Greif, S. K. ; Hebeler, K. ; Hinderer, T. ; Nissanke, S. ; Schwenk, A. ; Riley, T. E. ; Watts, A. L. ; Lattimer, J. M. ; Ho, W. C. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-323e2a7e8fba57787ce5d80ff073cf15e3db1843c3ac8962d8fd87b3422f11f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astronomy & Astrophysics</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Bayesian statistics</topic><topic>Binary stars</topic><topic>Compact objects</topic><topic>Constraints</topic><topic>Data analysis</topic><topic>dense matter</topic><topic>Density</topic><topic>equation of state</topic><topic>Equations of state</topic><topic>Field theory</topic><topic>Gravitational wave astronomy</topic><topic>Gravitational waves</topic><topic>Modelling</topic><topic>Neutron star cores</topic><topic>Neutron stars</topic><topic>Neutrons</topic><topic>Nuclear astrophysics</topic><topic>Nuclear physics</topic><topic>Physical Sciences</topic><topic>Pulsars</topic><topic>Science & Technology</topic><topic>stars: neutron</topic><topic>Telescopes</topic><topic>X ray telescopes</topic><topic>X-ray astronomy</topic><topic>X-rays: stars</topic><topic>XMM (spacecraft)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raaijmakers, G.</creatorcontrib><creatorcontrib>Greif, S. K.</creatorcontrib><creatorcontrib>Hebeler, K.</creatorcontrib><creatorcontrib>Hinderer, T.</creatorcontrib><creatorcontrib>Nissanke, S.</creatorcontrib><creatorcontrib>Schwenk, A.</creatorcontrib><creatorcontrib>Riley, T. E.</creatorcontrib><creatorcontrib>Watts, A. L.</creatorcontrib><creatorcontrib>Lattimer, J. M.</creatorcontrib><creatorcontrib>Ho, W. C. G.</creatorcontrib><creatorcontrib>Research Foundation of New York, NY (United States)</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Astrophysical journal. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Raaijmakers, G.</au><au>Greif, S. K.</au><au>Hebeler, K.</au><au>Hinderer, T.</au><au>Nissanke, S.</au><au>Schwenk, A.</au><au>Riley, T. E.</au><au>Watts, A. L.</au><au>Lattimer, J. M.</au><au>Ho, W. C. G.</au><aucorp>Research Foundation of New York, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constraints on the Dense Matter Equation of State and Neutron Star Properties from NICER’s Mass–Radius Estimate of PSR J0740+6620 and Multimessenger Observations</atitle><jtitle>Astrophysical journal. Letters</jtitle><stitle>APJL</stitle><stitle>ASTROPHYS J LETT</stitle><addtitle>Astrophys. J. Lett</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>918</volume><issue>2</issue><spage>L29</spage><pages>L29-</pages><artnum>29</artnum><issn>2041-8205</issn><eissn>2041-8213</eissn><abstract>In recent years our understanding of the dense matter equation of state (EOS) of neutron stars has significantly improved by analyzing multimessenger data from radio/X-ray pulsars, gravitational wave events, and from nuclear physics constraints. Here we study the additional impact on the EOS from the jointly estimated mass and radius of PSR J0740+6620, presented in Riley et al. by analyzing a combined data set from X-ray telescopes NICER and XMM-Newton. We employ two different high-density EOS parameterizations: a piecewise-polytropic (PP) model and a model based on the speed of sound in a neutron star (CS). At nuclear densities these are connected to microscopic calculations of neutron matter based on chiral effective field theory (EFT) interactions. In addition to the new NICER data for this heavy neutron star, we separately study constraints from the radio timing mass measurement of PSR J0740+6620, the gravitational wave events of binary neutron stars GW190425 and GW170817, and for the latter the associated kilonova AT2017gfo. By combining all these, and the NICER mass-radius estimate of PSR J0030+0451, we find the radius of a 1.4 M-circle dot neutron star to be constrained to the 95% credible ranges 12.33(-0.81)(+0.76) km (PP model) and 12.18(-0.79)(+0.56) km (CS model). In addition, we explore different chiral EFT calculations and show that the new NICER results provide tight constraints for the pressure of neutron star matter at around twice saturation density, which shows the power of these observations to constrain dense matter interactions at intermediate densities.</abstract><cop>BRISTOL</cop><pub>The American Astronomical Society</pub><doi>10.3847/2041-8213/ac089a</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6089-6836</orcidid><orcidid>https://orcid.org/0000-0001-8641-2062</orcidid><orcidid>https://orcid.org/0000-0001-8027-4076</orcidid><orcidid>https://orcid.org/0000-0002-9397-786X</orcidid><orcidid>https://orcid.org/0000-0003-0640-1801</orcidid><orcidid>https://orcid.org/0000-0002-3394-6105</orcidid><orcidid>https://orcid.org/0000-0002-1009-2354</orcidid><orcidid>https://orcid.org/0000-0001-6573-7773</orcidid><orcidid>https://orcid.org/0000-0001-9313-0493</orcidid><orcidid>https://orcid.org/0000-0002-5907-4552</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2041-8205 |
ispartof | Astrophysical journal. Letters, 2021-09, Vol.918 (2), p.L29, Article 29 |
issn | 2041-8205 2041-8213 |
language | eng |
recordid | cdi_osti_scitechconnect_1864764 |
source | Institute of Physics Open Access Journal Titles |
subjects | Astronomy & Astrophysics ASTRONOMY AND ASTROPHYSICS Bayesian statistics Binary stars Compact objects Constraints Data analysis dense matter Density equation of state Equations of state Field theory Gravitational wave astronomy Gravitational waves Modelling Neutron star cores Neutron stars Neutrons Nuclear astrophysics Nuclear physics Physical Sciences Pulsars Science & Technology stars: neutron Telescopes X ray telescopes X-ray astronomy X-rays: stars XMM (spacecraft) |
title | Constraints on the Dense Matter Equation of State and Neutron Star Properties from NICER’s Mass–Radius Estimate of PSR J0740+6620 and Multimessenger Observations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T00%3A02%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constraints%20on%20the%20Dense%20Matter%20Equation%20of%20State%20and%20Neutron%20Star%20Properties%20from%20NICER%E2%80%99s%20Mass%E2%80%93Radius%20Estimate%20of%20PSR%20J0740+6620%20and%20Multimessenger%20Observations&rft.jtitle=Astrophysical%20journal.%20Letters&rft.au=Raaijmakers,%20G.&rft.aucorp=Research%20Foundation%20of%20New%20York,%20NY%20(United%20States)&rft.date=2021-09-01&rft.volume=918&rft.issue=2&rft.spage=L29&rft.pages=L29-&rft.artnum=29&rft.issn=2041-8205&rft.eissn=2041-8213&rft_id=info:doi/10.3847/2041-8213/ac089a&rft_dat=%3Cproquest_O3W%3E2572262141%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572262141&rft_id=info:pmid/&rfr_iscdi=true |