An extreme-preserving long-term gridded daily precipitation data set for the conterminous United States

Extreme daily precipitation contributes to flooding that can cause significant economic damages, and so is important to properly capture in gridded meteorological data sets. This work examines precipitation extremes, the mean precipitation on wet days, and fraction of wet days in two widely used gri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrometeorology 2021-07, Vol.22 (7)
Hauptverfasser: Pierce, David W., Su, Lu, Cayan, Daniel R., Risser, Mark D., Livneh, Ben, Lettenmaier, Dennis P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Journal of hydrometeorology
container_volume 22
creator Pierce, David W.
Su, Lu
Cayan, Daniel R.
Risser, Mark D.
Livneh, Ben
Lettenmaier, Dennis P.
description Extreme daily precipitation contributes to flooding that can cause significant economic damages, and so is important to properly capture in gridded meteorological data sets. This work examines precipitation extremes, the mean precipitation on wet days, and fraction of wet days in two widely used gridded data sets over the conterminous U.S. (CONUS). Compared to the underlying station observations, the gridded data show a 27% reduction in annual 1-day maximum precipitation, 25% increase in wet day fraction, 1.5 to 2.5 day increase in mean wet spell length, 30% low bias in 20-year return values of daily precipitation, and 25% decrease in mean precipitation on wet days. It is shown these changes arise primarily from the time-adjustment applied to put the precipitation gauge observations into a uniform time frame, with the gridding process playing a lesser role. A new daily precipitation data set is developed that omits the time-adjustment (as well as extending the gridded data by 7 years) and is shown to perform significantly better in reproducing extreme precipitation metrics. When the new data set is used to force a land surface model, annually averaged 1-day maximum runoff increases 38% compared to the original data, annual mean runoff increases 17%, evapotranspiration drops 2.3%, and fewer wet days leads to a 3.3% increase in estimated solar insolation. These changes are large enough to affect portrayals of flood risk and water balance components important for ecological and climate-change applications across the CONUS.
doi_str_mv 10.1175/JHM-D-20-0212.1
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1864540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1175_JHM_D_20_0212_1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1541-64842ce008f938f2b0b271daed89d3e17fda82d9f873c2b447ed22f1a565a23e3</originalsourceid><addsrcrecordid>eNo9kEFLAzEQRoMoWKtnr8F72iSbdHePpVWrVDxowVtIk8k20mZLEsX-e1MqnmYY3jd8PIRuGR0xVsvx8-KFzAmnhHLGR-wMDZjkktRSsPP_XX5coquUPimlomXNAHXTgOEnR9gB2UdIEL996PC2Dx3JEHe4i95asNhqvz3gghi_91ln34dyyxonyNj1EecNYNOHY8iH_ivhVfC5BN8KDOkaXTi9TXDzN4do9XD_PluQ5evj02y6JIaVomQiGsENUNq4tmocX9M1r5nVYJvWVsBqZ3XDbeuaujJ8LUQNlnPHtJxIzSuohuju9LdP2atkSgWzKbUCmKxYMxFS0AKNT5CJfUoRnNpHv9PxoBhVR5mqyFRzxak6ylSs-gW_e2lD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An extreme-preserving long-term gridded daily precipitation data set for the conterminous United States</title><source>American Meteorological Society</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Pierce, David W. ; Su, Lu ; Cayan, Daniel R. ; Risser, Mark D. ; Livneh, Ben ; Lettenmaier, Dennis P.</creator><creatorcontrib>Pierce, David W. ; Su, Lu ; Cayan, Daniel R. ; Risser, Mark D. ; Livneh, Ben ; Lettenmaier, Dennis P. ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Extreme daily precipitation contributes to flooding that can cause significant economic damages, and so is important to properly capture in gridded meteorological data sets. This work examines precipitation extremes, the mean precipitation on wet days, and fraction of wet days in two widely used gridded data sets over the conterminous U.S. (CONUS). Compared to the underlying station observations, the gridded data show a 27% reduction in annual 1-day maximum precipitation, 25% increase in wet day fraction, 1.5 to 2.5 day increase in mean wet spell length, 30% low bias in 20-year return values of daily precipitation, and 25% decrease in mean precipitation on wet days. It is shown these changes arise primarily from the time-adjustment applied to put the precipitation gauge observations into a uniform time frame, with the gridding process playing a lesser role. A new daily precipitation data set is developed that omits the time-adjustment (as well as extending the gridded data by 7 years) and is shown to perform significantly better in reproducing extreme precipitation metrics. When the new data set is used to force a land surface model, annually averaged 1-day maximum runoff increases 38% compared to the original data, annual mean runoff increases 17%, evapotranspiration drops 2.3%, and fewer wet days leads to a 3.3% increase in estimated solar insolation. These changes are large enough to affect portrayals of flood risk and water balance components important for ecological and climate-change applications across the CONUS.</description><identifier>ISSN: 1525-755X</identifier><identifier>EISSN: 1525-7541</identifier><identifier>DOI: 10.1175/JHM-D-20-0212.1</identifier><language>eng</language><publisher>United States: American Meteorological Society</publisher><subject>data processing ; ENVIRONMENTAL SCIENCES ; extreme events ; hydrology ; precipitation ; runoff ; surface observations</subject><ispartof>Journal of hydrometeorology, 2021-07, Vol.22 (7)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1541-64842ce008f938f2b0b271daed89d3e17fda82d9f873c2b447ed22f1a565a23e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3681,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1864540$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pierce, David W.</creatorcontrib><creatorcontrib>Su, Lu</creatorcontrib><creatorcontrib>Cayan, Daniel R.</creatorcontrib><creatorcontrib>Risser, Mark D.</creatorcontrib><creatorcontrib>Livneh, Ben</creatorcontrib><creatorcontrib>Lettenmaier, Dennis P.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>An extreme-preserving long-term gridded daily precipitation data set for the conterminous United States</title><title>Journal of hydrometeorology</title><description>Extreme daily precipitation contributes to flooding that can cause significant economic damages, and so is important to properly capture in gridded meteorological data sets. This work examines precipitation extremes, the mean precipitation on wet days, and fraction of wet days in two widely used gridded data sets over the conterminous U.S. (CONUS). Compared to the underlying station observations, the gridded data show a 27% reduction in annual 1-day maximum precipitation, 25% increase in wet day fraction, 1.5 to 2.5 day increase in mean wet spell length, 30% low bias in 20-year return values of daily precipitation, and 25% decrease in mean precipitation on wet days. It is shown these changes arise primarily from the time-adjustment applied to put the precipitation gauge observations into a uniform time frame, with the gridding process playing a lesser role. A new daily precipitation data set is developed that omits the time-adjustment (as well as extending the gridded data by 7 years) and is shown to perform significantly better in reproducing extreme precipitation metrics. When the new data set is used to force a land surface model, annually averaged 1-day maximum runoff increases 38% compared to the original data, annual mean runoff increases 17%, evapotranspiration drops 2.3%, and fewer wet days leads to a 3.3% increase in estimated solar insolation. These changes are large enough to affect portrayals of flood risk and water balance components important for ecological and climate-change applications across the CONUS.</description><subject>data processing</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>extreme events</subject><subject>hydrology</subject><subject>precipitation</subject><subject>runoff</subject><subject>surface observations</subject><issn>1525-755X</issn><issn>1525-7541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLAzEQRoMoWKtnr8F72iSbdHePpVWrVDxowVtIk8k20mZLEsX-e1MqnmYY3jd8PIRuGR0xVsvx8-KFzAmnhHLGR-wMDZjkktRSsPP_XX5coquUPimlomXNAHXTgOEnR9gB2UdIEL996PC2Dx3JEHe4i95asNhqvz3gghi_91ln34dyyxonyNj1EecNYNOHY8iH_ivhVfC5BN8KDOkaXTi9TXDzN4do9XD_PluQ5evj02y6JIaVomQiGsENUNq4tmocX9M1r5nVYJvWVsBqZ3XDbeuaujJ8LUQNlnPHtJxIzSuohuju9LdP2atkSgWzKbUCmKxYMxFS0AKNT5CJfUoRnNpHv9PxoBhVR5mqyFRzxak6ylSs-gW_e2lD</recordid><startdate>20210709</startdate><enddate>20210709</enddate><creator>Pierce, David W.</creator><creator>Su, Lu</creator><creator>Cayan, Daniel R.</creator><creator>Risser, Mark D.</creator><creator>Livneh, Ben</creator><creator>Lettenmaier, Dennis P.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20210709</creationdate><title>An extreme-preserving long-term gridded daily precipitation data set for the conterminous United States</title><author>Pierce, David W. ; Su, Lu ; Cayan, Daniel R. ; Risser, Mark D. ; Livneh, Ben ; Lettenmaier, Dennis P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1541-64842ce008f938f2b0b271daed89d3e17fda82d9f873c2b447ed22f1a565a23e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>data processing</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>extreme events</topic><topic>hydrology</topic><topic>precipitation</topic><topic>runoff</topic><topic>surface observations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pierce, David W.</creatorcontrib><creatorcontrib>Su, Lu</creatorcontrib><creatorcontrib>Cayan, Daniel R.</creatorcontrib><creatorcontrib>Risser, Mark D.</creatorcontrib><creatorcontrib>Livneh, Ben</creatorcontrib><creatorcontrib>Lettenmaier, Dennis P.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of hydrometeorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pierce, David W.</au><au>Su, Lu</au><au>Cayan, Daniel R.</au><au>Risser, Mark D.</au><au>Livneh, Ben</au><au>Lettenmaier, Dennis P.</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An extreme-preserving long-term gridded daily precipitation data set for the conterminous United States</atitle><jtitle>Journal of hydrometeorology</jtitle><date>2021-07-09</date><risdate>2021</risdate><volume>22</volume><issue>7</issue><issn>1525-755X</issn><eissn>1525-7541</eissn><abstract>Extreme daily precipitation contributes to flooding that can cause significant economic damages, and so is important to properly capture in gridded meteorological data sets. This work examines precipitation extremes, the mean precipitation on wet days, and fraction of wet days in two widely used gridded data sets over the conterminous U.S. (CONUS). Compared to the underlying station observations, the gridded data show a 27% reduction in annual 1-day maximum precipitation, 25% increase in wet day fraction, 1.5 to 2.5 day increase in mean wet spell length, 30% low bias in 20-year return values of daily precipitation, and 25% decrease in mean precipitation on wet days. It is shown these changes arise primarily from the time-adjustment applied to put the precipitation gauge observations into a uniform time frame, with the gridding process playing a lesser role. A new daily precipitation data set is developed that omits the time-adjustment (as well as extending the gridded data by 7 years) and is shown to perform significantly better in reproducing extreme precipitation metrics. When the new data set is used to force a land surface model, annually averaged 1-day maximum runoff increases 38% compared to the original data, annual mean runoff increases 17%, evapotranspiration drops 2.3%, and fewer wet days leads to a 3.3% increase in estimated solar insolation. These changes are large enough to affect portrayals of flood risk and water balance components important for ecological and climate-change applications across the CONUS.</abstract><cop>United States</cop><pub>American Meteorological Society</pub><doi>10.1175/JHM-D-20-0212.1</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-755X
ispartof Journal of hydrometeorology, 2021-07, Vol.22 (7)
issn 1525-755X
1525-7541
language eng
recordid cdi_osti_scitechconnect_1864540
source American Meteorological Society; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects data processing
ENVIRONMENTAL SCIENCES
extreme events
hydrology
precipitation
runoff
surface observations
title An extreme-preserving long-term gridded daily precipitation data set for the conterminous United States
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A31%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20extreme-preserving%20long-term%20gridded%20daily%20precipitation%20data%20set%20for%20the%20conterminous%20United%20States&rft.jtitle=Journal%20of%20hydrometeorology&rft.au=Pierce,%20David%20W.&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2021-07-09&rft.volume=22&rft.issue=7&rft.issn=1525-755X&rft.eissn=1525-7541&rft_id=info:doi/10.1175/JHM-D-20-0212.1&rft_dat=%3Ccrossref_osti_%3E10_1175_JHM_D_20_0212_1%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true