Spin and Accretion Rate Dependence of Black Hole X-Ray Spectra

We present a survey of how the spectral features of black hole X-ray binary systems depend on spin, accretion rate, viewing angle, and Fe abundance when predicted on the basis of first-principles physical calculations. The power-law component hardens with increasing spin. The thermal component stren...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2021-12, Vol.922 (2), p.270
Hauptverfasser: Kinch, Brooks E., Schnittman, Jeremy D., Noble, Scott C., Kallman, Timothy R., Krolik, Julian H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 270
container_title The Astrophysical journal
container_volume 922
creator Kinch, Brooks E.
Schnittman, Jeremy D.
Noble, Scott C.
Kallman, Timothy R.
Krolik, Julian H.
description We present a survey of how the spectral features of black hole X-ray binary systems depend on spin, accretion rate, viewing angle, and Fe abundance when predicted on the basis of first-principles physical calculations. The power-law component hardens with increasing spin. The thermal component strengthens with increasing accretion rate. The Compton bump is enhanced by higher accretion rate and lower spin. The Fe Kα equivalent width grows sublinearly with Fe abundance. Strikingly, the Kα profile is more sensitive to accretion rate than to spin because its radial surface brightness profile is relatively flat, and higher accretion rate extends the production region to smaller radii. The overall radiative efficiency is at least 30%–100% greater than as predicted by the Novikov–Thorne model.
doi_str_mv 10.3847/1538-4357/ac2b9a
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_osti_scitechconnect_1863666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2607341794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-6d7cec215c43b868ac9d78ecaa771c6383d4218b76031dbee90b785c99347e2d3</originalsourceid><addsrcrecordid>eNp1kDtPHDEQgK0oSFyAniKFFZSO5fw6PxokQgggnYTEQ6KzvLNzyl4u9mIvBf8-vmwUGtAU1ni-eegj5JCzE2mVmfOFtI2SCzMPIFoXPpDZ_6-PZMYYU42W5nGXfCplvU2FczNyejf0kYbY0TOAjGOfIr0NI9LvOGDsMALStKLfNgF-0au0QfrY3IYXejcgjDnsk51V2BQ8-PfukYcfF_fnV83y5vL6_GzZgHJqbHRnAEHwBSjZWm0DuM5YhBCM4aCllZ0S3LZGM8m7FtGx1tgFOCeVQdHJPfJlmpvK2PsC_YjwE1KM9QrPrZZa6wodTdCQ09MzltGv03OO9S4vNDNSceNUpdhEQU6lZFz5Ife_Q37xnPmtSr_15rfe_KSytnyeWmIowccx14FMiL8Sma3lr1O5T8PryjCsvRPC1zDMD92qcsdvcO9u_QOfYoek</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607341794</pqid></control><display><type>article</type><title>Spin and Accretion Rate Dependence of Black Hole X-Ray Spectra</title><source>IOP Publishing Free Content</source><creator>Kinch, Brooks E. ; Schnittman, Jeremy D. ; Noble, Scott C. ; Kallman, Timothy R. ; Krolik, Julian H.</creator><creatorcontrib>Kinch, Brooks E. ; Schnittman, Jeremy D. ; Noble, Scott C. ; Kallman, Timothy R. ; Krolik, Julian H. ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>We present a survey of how the spectral features of black hole X-ray binary systems depend on spin, accretion rate, viewing angle, and Fe abundance when predicted on the basis of first-principles physical calculations. The power-law component hardens with increasing spin. The thermal component strengthens with increasing accretion rate. The Compton bump is enhanced by higher accretion rate and lower spin. The Fe Kα equivalent width grows sublinearly with Fe abundance. Strikingly, the Kα profile is more sensitive to accretion rate than to spin because its radial surface brightness profile is relatively flat, and higher accretion rate extends the production region to smaller radii. The overall radiative efficiency is at least 30%–100% greater than as predicted by the Novikov–Thorne model.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac2b9a</identifier><language>eng</language><publisher>Goddard Space Flight Center: The American Astronomical Society</publisher><subject>Accretion ; Astronomy ; ASTRONOMY AND ASTROPHYSICS ; Astrophysics ; Black holes ; Deposition ; First principles ; General relativity ; Magnetohydrodynamical simulations ; Surface brightness ; X ray binaries ; X ray spectra ; X ray stars ; X-ray astronomy ; X-ray binary stars</subject><ispartof>The Astrophysical journal, 2021-12, Vol.922 (2), p.270</ispartof><rights>2021. The American Astronomical Society. All rights reserved.</rights><rights>Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL</rights><rights>Copyright IOP Publishing Dec 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-6d7cec215c43b868ac9d78ecaa771c6383d4218b76031dbee90b785c99347e2d3</citedby><cites>FETCH-LOGICAL-c494t-6d7cec215c43b868ac9d78ecaa771c6383d4218b76031dbee90b785c99347e2d3</cites><orcidid>0000-0002-2995-7717 ; 0000-0002-8676-425X ; 0000-0002-5779-6906 ; 0000-0002-2942-8399 ; 0000-0003-3547-8306 ; 000000028676425X ; 0000000257796906 ; 0000000335478306 ; 0000000229428399 ; 0000000229957717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac2b9a/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,796,881,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac2b9a$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1863666$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kinch, Brooks E.</creatorcontrib><creatorcontrib>Schnittman, Jeremy D.</creatorcontrib><creatorcontrib>Noble, Scott C.</creatorcontrib><creatorcontrib>Kallman, Timothy R.</creatorcontrib><creatorcontrib>Krolik, Julian H.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Spin and Accretion Rate Dependence of Black Hole X-Ray Spectra</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We present a survey of how the spectral features of black hole X-ray binary systems depend on spin, accretion rate, viewing angle, and Fe abundance when predicted on the basis of first-principles physical calculations. The power-law component hardens with increasing spin. The thermal component strengthens with increasing accretion rate. The Compton bump is enhanced by higher accretion rate and lower spin. The Fe Kα equivalent width grows sublinearly with Fe abundance. Strikingly, the Kα profile is more sensitive to accretion rate than to spin because its radial surface brightness profile is relatively flat, and higher accretion rate extends the production region to smaller radii. The overall radiative efficiency is at least 30%–100% greater than as predicted by the Novikov–Thorne model.</description><subject>Accretion</subject><subject>Astronomy</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Astrophysics</subject><subject>Black holes</subject><subject>Deposition</subject><subject>First principles</subject><subject>General relativity</subject><subject>Magnetohydrodynamical simulations</subject><subject>Surface brightness</subject><subject>X ray binaries</subject><subject>X ray spectra</subject><subject>X ray stars</subject><subject>X-ray astronomy</subject><subject>X-ray binary stars</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNp1kDtPHDEQgK0oSFyAniKFFZSO5fw6PxokQgggnYTEQ6KzvLNzyl4u9mIvBf8-vmwUGtAU1ni-eegj5JCzE2mVmfOFtI2SCzMPIFoXPpDZ_6-PZMYYU42W5nGXfCplvU2FczNyejf0kYbY0TOAjGOfIr0NI9LvOGDsMALStKLfNgF-0au0QfrY3IYXejcgjDnsk51V2BQ8-PfukYcfF_fnV83y5vL6_GzZgHJqbHRnAEHwBSjZWm0DuM5YhBCM4aCllZ0S3LZGM8m7FtGx1tgFOCeVQdHJPfJlmpvK2PsC_YjwE1KM9QrPrZZa6wodTdCQ09MzltGv03OO9S4vNDNSceNUpdhEQU6lZFz5Ife_Q37xnPmtSr_15rfe_KSytnyeWmIowccx14FMiL8Sma3lr1O5T8PryjCsvRPC1zDMD92qcsdvcO9u_QOfYoek</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Kinch, Brooks E.</creator><creator>Schnittman, Jeremy D.</creator><creator>Noble, Scott C.</creator><creator>Kallman, Timothy R.</creator><creator>Krolik, Julian H.</creator><general>The American Astronomical Society</general><general>Astrophysical Journal</general><general>IOP Publishing</general><scope>CYE</scope><scope>CYI</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2995-7717</orcidid><orcidid>https://orcid.org/0000-0002-8676-425X</orcidid><orcidid>https://orcid.org/0000-0002-5779-6906</orcidid><orcidid>https://orcid.org/0000-0002-2942-8399</orcidid><orcidid>https://orcid.org/0000-0003-3547-8306</orcidid><orcidid>https://orcid.org/000000028676425X</orcidid><orcidid>https://orcid.org/0000000257796906</orcidid><orcidid>https://orcid.org/0000000335478306</orcidid><orcidid>https://orcid.org/0000000229428399</orcidid><orcidid>https://orcid.org/0000000229957717</orcidid></search><sort><creationdate>20211201</creationdate><title>Spin and Accretion Rate Dependence of Black Hole X-Ray Spectra</title><author>Kinch, Brooks E. ; Schnittman, Jeremy D. ; Noble, Scott C. ; Kallman, Timothy R. ; Krolik, Julian H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-6d7cec215c43b868ac9d78ecaa771c6383d4218b76031dbee90b785c99347e2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accretion</topic><topic>Astronomy</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Astrophysics</topic><topic>Black holes</topic><topic>Deposition</topic><topic>First principles</topic><topic>General relativity</topic><topic>Magnetohydrodynamical simulations</topic><topic>Surface brightness</topic><topic>X ray binaries</topic><topic>X ray spectra</topic><topic>X ray stars</topic><topic>X-ray astronomy</topic><topic>X-ray binary stars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kinch, Brooks E.</creatorcontrib><creatorcontrib>Schnittman, Jeremy D.</creatorcontrib><creatorcontrib>Noble, Scott C.</creatorcontrib><creatorcontrib>Kallman, Timothy R.</creatorcontrib><creatorcontrib>Krolik, Julian H.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kinch, Brooks E.</au><au>Schnittman, Jeremy D.</au><au>Noble, Scott C.</au><au>Kallman, Timothy R.</au><au>Krolik, Julian H.</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spin and Accretion Rate Dependence of Black Hole X-Ray Spectra</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>922</volume><issue>2</issue><spage>270</spage><pages>270-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We present a survey of how the spectral features of black hole X-ray binary systems depend on spin, accretion rate, viewing angle, and Fe abundance when predicted on the basis of first-principles physical calculations. The power-law component hardens with increasing spin. The thermal component strengthens with increasing accretion rate. The Compton bump is enhanced by higher accretion rate and lower spin. The Fe Kα equivalent width grows sublinearly with Fe abundance. Strikingly, the Kα profile is more sensitive to accretion rate than to spin because its radial surface brightness profile is relatively flat, and higher accretion rate extends the production region to smaller radii. The overall radiative efficiency is at least 30%–100% greater than as predicted by the Novikov–Thorne model.</abstract><cop>Goddard Space Flight Center</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac2b9a</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2995-7717</orcidid><orcidid>https://orcid.org/0000-0002-8676-425X</orcidid><orcidid>https://orcid.org/0000-0002-5779-6906</orcidid><orcidid>https://orcid.org/0000-0002-2942-8399</orcidid><orcidid>https://orcid.org/0000-0003-3547-8306</orcidid><orcidid>https://orcid.org/000000028676425X</orcidid><orcidid>https://orcid.org/0000000257796906</orcidid><orcidid>https://orcid.org/0000000335478306</orcidid><orcidid>https://orcid.org/0000000229428399</orcidid><orcidid>https://orcid.org/0000000229957717</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2021-12, Vol.922 (2), p.270
issn 0004-637X
1538-4357
language eng
recordid cdi_osti_scitechconnect_1863666
source IOP Publishing Free Content
subjects Accretion
Astronomy
ASTRONOMY AND ASTROPHYSICS
Astrophysics
Black holes
Deposition
First principles
General relativity
Magnetohydrodynamical simulations
Surface brightness
X ray binaries
X ray spectra
X ray stars
X-ray astronomy
X-ray binary stars
title Spin and Accretion Rate Dependence of Black Hole X-Ray Spectra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spin%20and%20Accretion%20Rate%20Dependence%20of%20Black%20Hole%20X-Ray%20Spectra&rft.jtitle=The%20Astrophysical%20journal&rft.au=Kinch,%20Brooks%20E.&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2021-12-01&rft.volume=922&rft.issue=2&rft.spage=270&rft.pages=270-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac2b9a&rft_dat=%3Cproquest_O3W%3E2607341794%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607341794&rft_id=info:pmid/&rfr_iscdi=true