Millimeter-wave electromagnetic monitoring for liquid metal droplet-on-demand printing

As new printing approaches emerge, in situ diagnostics to monitor the print quality in real-time become essential for long-term monitoring and feedback control. In this article, we present a millimeter-wave electromagnetic monitoring approach for liquid metal droplet-on-demand printing to support th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2021-10, Vol.130 (14)
Hauptverfasser: Chang, T., Mukherjee, S., Watkins, N. N., Benavidez, E., Gilmore, A. M., Pascall, A. J., Stobbe, D. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 14
container_start_page
container_title Journal of applied physics
container_volume 130
creator Chang, T.
Mukherjee, S.
Watkins, N. N.
Benavidez, E.
Gilmore, A. M.
Pascall, A. J.
Stobbe, D. M.
description As new printing approaches emerge, in situ diagnostics to monitor the print quality in real-time become essential for long-term monitoring and feedback control. In this article, we present a millimeter-wave electromagnetic monitoring approach for liquid metal droplet-on-demand printing to support the high-speed and real-time evaluation of droplet ejection. An open-ended rectangular waveguide is placed perpendicular to a jetted droplet stream and operated at a continuous-wave frequency of 40 GHz. Liquid metal droplets with diameters as low as 1.2 mm are characterized, and droplet jetting events on the order of 500 μm are detected at ejection rates up to 80 Hz. The measured results demonstrate that trends at the macro-level (large-scale print variation and anomalies at the nozzle tip) as well as micro-level (droplet size, position, and dynamics) can be detected using this technique.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1863665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1863665</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18636653</originalsourceid><addsrcrecordid>eNqNzbsOwiAYhmFiNLEe7oG4k4BND8xG4-JmXBsCf-tvKFRAvX0ZvACnb3m-vDNSCN5K1lQVn5OC871grWzkkqxifHAuRFvKgtwuaC2OkCCwj3oDBQs6BT-qwUFCTUfvMPmAbqC9D9Ti84WG5oOy1AQ_WUjMO2ZgVM7QKcOU7YYsemUjbH-7JrvT8Xo4Mx8TdlFjAn3X3rkc60Rbl3VdlX-hL1DDQ7k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Millimeter-wave electromagnetic monitoring for liquid metal droplet-on-demand printing</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Chang, T. ; Mukherjee, S. ; Watkins, N. N. ; Benavidez, E. ; Gilmore, A. M. ; Pascall, A. J. ; Stobbe, D. M.</creator><creatorcontrib>Chang, T. ; Mukherjee, S. ; Watkins, N. N. ; Benavidez, E. ; Gilmore, A. M. ; Pascall, A. J. ; Stobbe, D. M. ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>As new printing approaches emerge, in situ diagnostics to monitor the print quality in real-time become essential for long-term monitoring and feedback control. In this article, we present a millimeter-wave electromagnetic monitoring approach for liquid metal droplet-on-demand printing to support the high-speed and real-time evaluation of droplet ejection. An open-ended rectangular waveguide is placed perpendicular to a jetted droplet stream and operated at a continuous-wave frequency of 40 GHz. Liquid metal droplets with diameters as low as 1.2 mm are characterized, and droplet jetting events on the order of 500 μm are detected at ejection rates up to 80 Hz. The measured results demonstrate that trends at the macro-level (large-scale print variation and anomalies at the nozzle tip) as well as micro-level (droplet size, position, and dynamics) can be detected using this technique.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><language>eng</language><publisher>United States: American Institute of Physics (AIP)</publisher><subject>Electromagnetic interactions ; ENGINEERING ; Liquid metals ; Phase variation ; Radio spectrum ; Real-time process ; Waveguides</subject><ispartof>Journal of applied physics, 2021-10, Vol.130 (14)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000155978944 ; 0000000228408521 ; 000000026983042X ; 0000000279338690 ; 0000000273806393</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1863665$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, T.</creatorcontrib><creatorcontrib>Mukherjee, S.</creatorcontrib><creatorcontrib>Watkins, N. N.</creatorcontrib><creatorcontrib>Benavidez, E.</creatorcontrib><creatorcontrib>Gilmore, A. M.</creatorcontrib><creatorcontrib>Pascall, A. J.</creatorcontrib><creatorcontrib>Stobbe, D. M.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Millimeter-wave electromagnetic monitoring for liquid metal droplet-on-demand printing</title><title>Journal of applied physics</title><description>As new printing approaches emerge, in situ diagnostics to monitor the print quality in real-time become essential for long-term monitoring and feedback control. In this article, we present a millimeter-wave electromagnetic monitoring approach for liquid metal droplet-on-demand printing to support the high-speed and real-time evaluation of droplet ejection. An open-ended rectangular waveguide is placed perpendicular to a jetted droplet stream and operated at a continuous-wave frequency of 40 GHz. Liquid metal droplets with diameters as low as 1.2 mm are characterized, and droplet jetting events on the order of 500 μm are detected at ejection rates up to 80 Hz. The measured results demonstrate that trends at the macro-level (large-scale print variation and anomalies at the nozzle tip) as well as micro-level (droplet size, position, and dynamics) can be detected using this technique.</description><subject>Electromagnetic interactions</subject><subject>ENGINEERING</subject><subject>Liquid metals</subject><subject>Phase variation</subject><subject>Radio spectrum</subject><subject>Real-time process</subject><subject>Waveguides</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNzbsOwiAYhmFiNLEe7oG4k4BND8xG4-JmXBsCf-tvKFRAvX0ZvACnb3m-vDNSCN5K1lQVn5OC871grWzkkqxifHAuRFvKgtwuaC2OkCCwj3oDBQs6BT-qwUFCTUfvMPmAbqC9D9Ti84WG5oOy1AQ_WUjMO2ZgVM7QKcOU7YYsemUjbH-7JrvT8Xo4Mx8TdlFjAn3X3rkc60Rbl3VdlX-hL1DDQ7k</recordid><startdate>20211011</startdate><enddate>20211011</enddate><creator>Chang, T.</creator><creator>Mukherjee, S.</creator><creator>Watkins, N. N.</creator><creator>Benavidez, E.</creator><creator>Gilmore, A. M.</creator><creator>Pascall, A. J.</creator><creator>Stobbe, D. M.</creator><general>American Institute of Physics (AIP)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000155978944</orcidid><orcidid>https://orcid.org/0000000228408521</orcidid><orcidid>https://orcid.org/000000026983042X</orcidid><orcidid>https://orcid.org/0000000279338690</orcidid><orcidid>https://orcid.org/0000000273806393</orcidid></search><sort><creationdate>20211011</creationdate><title>Millimeter-wave electromagnetic monitoring for liquid metal droplet-on-demand printing</title><author>Chang, T. ; Mukherjee, S. ; Watkins, N. N. ; Benavidez, E. ; Gilmore, A. M. ; Pascall, A. J. ; Stobbe, D. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18636653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Electromagnetic interactions</topic><topic>ENGINEERING</topic><topic>Liquid metals</topic><topic>Phase variation</topic><topic>Radio spectrum</topic><topic>Real-time process</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, T.</creatorcontrib><creatorcontrib>Mukherjee, S.</creatorcontrib><creatorcontrib>Watkins, N. N.</creatorcontrib><creatorcontrib>Benavidez, E.</creatorcontrib><creatorcontrib>Gilmore, A. M.</creatorcontrib><creatorcontrib>Pascall, A. J.</creatorcontrib><creatorcontrib>Stobbe, D. M.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, T.</au><au>Mukherjee, S.</au><au>Watkins, N. N.</au><au>Benavidez, E.</au><au>Gilmore, A. M.</au><au>Pascall, A. J.</au><au>Stobbe, D. M.</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Millimeter-wave electromagnetic monitoring for liquid metal droplet-on-demand printing</atitle><jtitle>Journal of applied physics</jtitle><date>2021-10-11</date><risdate>2021</risdate><volume>130</volume><issue>14</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>As new printing approaches emerge, in situ diagnostics to monitor the print quality in real-time become essential for long-term monitoring and feedback control. In this article, we present a millimeter-wave electromagnetic monitoring approach for liquid metal droplet-on-demand printing to support the high-speed and real-time evaluation of droplet ejection. An open-ended rectangular waveguide is placed perpendicular to a jetted droplet stream and operated at a continuous-wave frequency of 40 GHz. Liquid metal droplets with diameters as low as 1.2 mm are characterized, and droplet jetting events on the order of 500 μm are detected at ejection rates up to 80 Hz. The measured results demonstrate that trends at the macro-level (large-scale print variation and anomalies at the nozzle tip) as well as micro-level (droplet size, position, and dynamics) can be detected using this technique.</abstract><cop>United States</cop><pub>American Institute of Physics (AIP)</pub><orcidid>https://orcid.org/0000000155978944</orcidid><orcidid>https://orcid.org/0000000228408521</orcidid><orcidid>https://orcid.org/000000026983042X</orcidid><orcidid>https://orcid.org/0000000279338690</orcidid><orcidid>https://orcid.org/0000000273806393</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2021-10, Vol.130 (14)
issn 0021-8979
1089-7550
language eng
recordid cdi_osti_scitechconnect_1863665
source AIP Journals Complete; Alma/SFX Local Collection
subjects Electromagnetic interactions
ENGINEERING
Liquid metals
Phase variation
Radio spectrum
Real-time process
Waveguides
title Millimeter-wave electromagnetic monitoring for liquid metal droplet-on-demand printing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A47%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Millimeter-wave%20electromagnetic%20monitoring%20for%20liquid%20metal%20droplet-on-demand%20printing&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Chang,%20T.&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2021-10-11&rft.volume=130&rft.issue=14&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/&rft_dat=%3Costi%3E1863665%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true