Multimodal 3D characterization of voids in shock-loaded tantalum: Implications for ductile spallation mechanisms
Predicting the failure of crystalline materials at high strain rates requires knowledge of the underlying failure mechanisms and their dependence on microstructure. However, little experimental consensus exists on the underlying micromechanics of spallation. In this study, a 3D-EBSD characterization...
Gespeichert in:
Veröffentlicht in: | Acta materialia 2021-06, Vol.215 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Acta materialia |
container_volume | 215 |
creator | Francis, Toby Rottmann, Paul F. Polonsky, Andrew T. Charpagne, Marie-Agathe Echlin, McLean P. Anghel, Veronica Jones, David R. Gray, III, George T. De Graef, Marc Pollock, Tresa M. |
description | Predicting the failure of crystalline materials at high strain rates requires knowledge of the underlying failure mechanisms and their dependence on microstructure. However, little experimental consensus exists on the underlying micromechanics of spallation. In this study, a 3D-EBSD characterization experiment is performed on tantalum prior to and after partial spallation by plate impact, which allowed for the statistical assessment of the microstructural neighborhoods surrounding incipient voids. In analyzing the resulting dataset containing 5884 grains and 467 voids, it is observed that the voids were roughly spherical and consistent in size throughout the spalled material. The voids mostly resided at quadruple points, at triple junctions, at grain boundaries, and within grains, in decreasing order of prevalence. Moreover, voids tended to form at grain boundaries with high degrees of plastic incompatibility, growing into the plastically soft grain but orienting primarily with or perpendicular to the loading direction. Here, the statistics from these analyses of 3D microstructural data support dynamic cavitation models for ductile spallation. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1863551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1863551</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18635513</originalsourceid><addsrcrecordid>eNqNzLtOw0AQheEVAolweYcRvSU7600CLRdBQUcfjXbXyiSzO5ZnTMHTYwEPQHVO8ek_c6tut_XNug_-fPk-3DebPvSX7kr12Lbdetu3Kze-z2xUJCGDf4J4wAmj5Ym-0EgqyACfQkmBKuhB4qlhwZQTGFZDnssDvJWRKf5whUEmSHM04gw6IvNvpuSlXEmL3riLAVnz7d9eu7uX54_H10bUaK-RbKFRas3R9t1u40Po_L_QN9LzTNw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multimodal 3D characterization of voids in shock-loaded tantalum: Implications for ductile spallation mechanisms</title><source>Access via ScienceDirect (Elsevier)</source><creator>Francis, Toby ; Rottmann, Paul F. ; Polonsky, Andrew T. ; Charpagne, Marie-Agathe ; Echlin, McLean P. ; Anghel, Veronica ; Jones, David R. ; Gray, III, George T. ; De Graef, Marc ; Pollock, Tresa M.</creator><creatorcontrib>Francis, Toby ; Rottmann, Paul F. ; Polonsky, Andrew T. ; Charpagne, Marie-Agathe ; Echlin, McLean P. ; Anghel, Veronica ; Jones, David R. ; Gray, III, George T. ; De Graef, Marc ; Pollock, Tresa M. ; Univ. of California, Santa Barbara, CA (United States)</creatorcontrib><description>Predicting the failure of crystalline materials at high strain rates requires knowledge of the underlying failure mechanisms and their dependence on microstructure. However, little experimental consensus exists on the underlying micromechanics of spallation. In this study, a 3D-EBSD characterization experiment is performed on tantalum prior to and after partial spallation by plate impact, which allowed for the statistical assessment of the microstructural neighborhoods surrounding incipient voids. In analyzing the resulting dataset containing 5884 grains and 467 voids, it is observed that the voids were roughly spherical and consistent in size throughout the spalled material. The voids mostly resided at quadruple points, at triple junctions, at grain boundaries, and within grains, in decreasing order of prevalence. Moreover, voids tended to form at grain boundaries with high degrees of plastic incompatibility, growing into the plastically soft grain but orienting primarily with or perpendicular to the loading direction. Here, the statistics from these analyses of 3D microstructural data support dynamic cavitation models for ductile spallation.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>3D Characterization ; Dynamic Behavior ; MATERIALS SCIENCE ; Microstructure ; Shock Loading ; Spallation ; Tantalum</subject><ispartof>Acta materialia, 2021-06, Vol.215</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000341070366 ; 0000000343236577 ; 0000000345159827</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1863551$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Francis, Toby</creatorcontrib><creatorcontrib>Rottmann, Paul F.</creatorcontrib><creatorcontrib>Polonsky, Andrew T.</creatorcontrib><creatorcontrib>Charpagne, Marie-Agathe</creatorcontrib><creatorcontrib>Echlin, McLean P.</creatorcontrib><creatorcontrib>Anghel, Veronica</creatorcontrib><creatorcontrib>Jones, David R.</creatorcontrib><creatorcontrib>Gray, III, George T.</creatorcontrib><creatorcontrib>De Graef, Marc</creatorcontrib><creatorcontrib>Pollock, Tresa M.</creatorcontrib><creatorcontrib>Univ. of California, Santa Barbara, CA (United States)</creatorcontrib><title>Multimodal 3D characterization of voids in shock-loaded tantalum: Implications for ductile spallation mechanisms</title><title>Acta materialia</title><description>Predicting the failure of crystalline materials at high strain rates requires knowledge of the underlying failure mechanisms and their dependence on microstructure. However, little experimental consensus exists on the underlying micromechanics of spallation. In this study, a 3D-EBSD characterization experiment is performed on tantalum prior to and after partial spallation by plate impact, which allowed for the statistical assessment of the microstructural neighborhoods surrounding incipient voids. In analyzing the resulting dataset containing 5884 grains and 467 voids, it is observed that the voids were roughly spherical and consistent in size throughout the spalled material. The voids mostly resided at quadruple points, at triple junctions, at grain boundaries, and within grains, in decreasing order of prevalence. Moreover, voids tended to form at grain boundaries with high degrees of plastic incompatibility, growing into the plastically soft grain but orienting primarily with or perpendicular to the loading direction. Here, the statistics from these analyses of 3D microstructural data support dynamic cavitation models for ductile spallation.</description><subject>3D Characterization</subject><subject>Dynamic Behavior</subject><subject>MATERIALS SCIENCE</subject><subject>Microstructure</subject><subject>Shock Loading</subject><subject>Spallation</subject><subject>Tantalum</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNzLtOw0AQheEVAolweYcRvSU7600CLRdBQUcfjXbXyiSzO5ZnTMHTYwEPQHVO8ek_c6tut_XNug_-fPk-3DebPvSX7kr12Lbdetu3Kze-z2xUJCGDf4J4wAmj5Ym-0EgqyACfQkmBKuhB4qlhwZQTGFZDnssDvJWRKf5whUEmSHM04gw6IvNvpuSlXEmL3riLAVnz7d9eu7uX54_H10bUaK-RbKFRas3R9t1u40Po_L_QN9LzTNw</recordid><startdate>20210614</startdate><enddate>20210614</enddate><creator>Francis, Toby</creator><creator>Rottmann, Paul F.</creator><creator>Polonsky, Andrew T.</creator><creator>Charpagne, Marie-Agathe</creator><creator>Echlin, McLean P.</creator><creator>Anghel, Veronica</creator><creator>Jones, David R.</creator><creator>Gray, III, George T.</creator><creator>De Graef, Marc</creator><creator>Pollock, Tresa M.</creator><general>Elsevier</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000341070366</orcidid><orcidid>https://orcid.org/0000000343236577</orcidid><orcidid>https://orcid.org/0000000345159827</orcidid></search><sort><creationdate>20210614</creationdate><title>Multimodal 3D characterization of voids in shock-loaded tantalum: Implications for ductile spallation mechanisms</title><author>Francis, Toby ; Rottmann, Paul F. ; Polonsky, Andrew T. ; Charpagne, Marie-Agathe ; Echlin, McLean P. ; Anghel, Veronica ; Jones, David R. ; Gray, III, George T. ; De Graef, Marc ; Pollock, Tresa M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18635513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D Characterization</topic><topic>Dynamic Behavior</topic><topic>MATERIALS SCIENCE</topic><topic>Microstructure</topic><topic>Shock Loading</topic><topic>Spallation</topic><topic>Tantalum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Francis, Toby</creatorcontrib><creatorcontrib>Rottmann, Paul F.</creatorcontrib><creatorcontrib>Polonsky, Andrew T.</creatorcontrib><creatorcontrib>Charpagne, Marie-Agathe</creatorcontrib><creatorcontrib>Echlin, McLean P.</creatorcontrib><creatorcontrib>Anghel, Veronica</creatorcontrib><creatorcontrib>Jones, David R.</creatorcontrib><creatorcontrib>Gray, III, George T.</creatorcontrib><creatorcontrib>De Graef, Marc</creatorcontrib><creatorcontrib>Pollock, Tresa M.</creatorcontrib><creatorcontrib>Univ. of California, Santa Barbara, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Francis, Toby</au><au>Rottmann, Paul F.</au><au>Polonsky, Andrew T.</au><au>Charpagne, Marie-Agathe</au><au>Echlin, McLean P.</au><au>Anghel, Veronica</au><au>Jones, David R.</au><au>Gray, III, George T.</au><au>De Graef, Marc</au><au>Pollock, Tresa M.</au><aucorp>Univ. of California, Santa Barbara, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimodal 3D characterization of voids in shock-loaded tantalum: Implications for ductile spallation mechanisms</atitle><jtitle>Acta materialia</jtitle><date>2021-06-14</date><risdate>2021</risdate><volume>215</volume><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>Predicting the failure of crystalline materials at high strain rates requires knowledge of the underlying failure mechanisms and their dependence on microstructure. However, little experimental consensus exists on the underlying micromechanics of spallation. In this study, a 3D-EBSD characterization experiment is performed on tantalum prior to and after partial spallation by plate impact, which allowed for the statistical assessment of the microstructural neighborhoods surrounding incipient voids. In analyzing the resulting dataset containing 5884 grains and 467 voids, it is observed that the voids were roughly spherical and consistent in size throughout the spalled material. The voids mostly resided at quadruple points, at triple junctions, at grain boundaries, and within grains, in decreasing order of prevalence. Moreover, voids tended to form at grain boundaries with high degrees of plastic incompatibility, growing into the plastically soft grain but orienting primarily with or perpendicular to the loading direction. Here, the statistics from these analyses of 3D microstructural data support dynamic cavitation models for ductile spallation.</abstract><cop>United States</cop><pub>Elsevier</pub><orcidid>https://orcid.org/0000000341070366</orcidid><orcidid>https://orcid.org/0000000343236577</orcidid><orcidid>https://orcid.org/0000000345159827</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6454 |
ispartof | Acta materialia, 2021-06, Vol.215 |
issn | 1359-6454 1873-2453 |
language | eng |
recordid | cdi_osti_scitechconnect_1863551 |
source | Access via ScienceDirect (Elsevier) |
subjects | 3D Characterization Dynamic Behavior MATERIALS SCIENCE Microstructure Shock Loading Spallation Tantalum |
title | Multimodal 3D characterization of voids in shock-loaded tantalum: Implications for ductile spallation mechanisms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A44%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimodal%203D%20characterization%20of%20voids%20in%20shock-loaded%20tantalum:%20Implications%20for%20ductile%20spallation%20mechanisms&rft.jtitle=Acta%20materialia&rft.au=Francis,%20Toby&rft.aucorp=Univ.%20of%20California,%20Santa%20Barbara,%20CA%20(United%20States)&rft.date=2021-06-14&rft.volume=215&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/&rft_dat=%3Costi%3E1863551%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |