Magnetized ICF implosions: Scaling of temperature and yield enhancement
This paper investigates the impact of an applied magnetic field on the yield and hot-spot temperature of inertial confinement fusion implosions. A scaling of temperature amplification due to magnetization is shown to be in agreement with unperturbed two-dimensional (2D) extended-magnetohydrodynamic...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2022-04, Vol.29 (4) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 29 |
creator | Walsh, C. A. O'Neill, S. Chittenden, J. P. Crilly, A. J. Appelbe, B. Strozzi, D. J. Ho, D. Sio, H. Pollock, B. Divol, L. Hartouni, E. Rosen, M. Logan, B. G. Moody, J. D. |
description | This paper investigates the impact of an applied magnetic field on the yield and hot-spot temperature of inertial confinement fusion implosions. A scaling of temperature amplification due to magnetization is shown to be in agreement with unperturbed two-dimensional (2D) extended-magnetohydrodynamic simulations. A perfectly spherical hot-spot with an axial magnetic field is predicted to have a maximum temperature amplification of 37%. However, elongation of the hot-spot along field lines raises this value by decreasing the hot-spot surface area along magnetic field lines. A scaling for yield amplification predicts that a magnetic field has the greatest benefit for low-temperature implosions; this is in agreement with simplified 1D simulations, but not 2D simulations where the hot-spot pressure can be significantly reduced by heat-flow anisotropy. Simulations including a P2 drive asymmetry then show that the magnetized yield is a maximum when the capsule drive corrects the hot-spot shape to be round at neutron bang time. An applied magnetic field is also found to be most beneficial for implosions that are more highly perturbed, exceeding the theoretical yield enhancement for symmetric hot-spots. Increasing the magnetic field strength past the value required to magnetize the electrons is beneficial due to the additional suppression of perturbations by magnetic tension. |
doi_str_mv | 10.1063/5.0081915 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1860539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2645996318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3705-2f366221e577f6b8d62741a13470ce9b24fd41337c6a190c65e046be20121a643</originalsourceid><addsrcrecordid>eNp90E1Lw0AQBuAgCtbqwX8Q9KSQut-beJNia0HxoIK3ZbuZtCnNbtzdCvXXm5KiB8HTzOHhneFNknOMRhgJesNHCOW4wPwgGWCUF5kUkh3udokyIdj7cXISwgohxATPB8n0SS8sxPoLynQ2nqR1065dqJ0Nt-mL0evaLlJXpRGaFryOGw-ptmW6rWFdpmCX2hpowMbT5KjS6wBn-zlM3ib3r-OH7PF5OhvfPWaGSsQzUlEhCMHApazEPC8FkQxrTJlEBoo5YVXJMKXSCI0LZASH7tE5EIQJ1oLRYXLR57oQaxVMHcEsjbMWTFQ4F4jTokOXPWq9-9hAiGrlNt52fykiGC8KQXHeqateGe9C8FCp1teN9luFkdqVqbjal9nZ697uLurY9fODP53_haotq__w3-RvLTt_0A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645996318</pqid></control><display><type>article</type><title>Magnetized ICF implosions: Scaling of temperature and yield enhancement</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Walsh, C. A. ; O'Neill, S. ; Chittenden, J. P. ; Crilly, A. J. ; Appelbe, B. ; Strozzi, D. J. ; Ho, D. ; Sio, H. ; Pollock, B. ; Divol, L. ; Hartouni, E. ; Rosen, M. ; Logan, B. G. ; Moody, J. D.</creator><creatorcontrib>Walsh, C. A. ; O'Neill, S. ; Chittenden, J. P. ; Crilly, A. J. ; Appelbe, B. ; Strozzi, D. J. ; Ho, D. ; Sio, H. ; Pollock, B. ; Divol, L. ; Hartouni, E. ; Rosen, M. ; Logan, B. G. ; Moody, J. D.</creatorcontrib><description>This paper investigates the impact of an applied magnetic field on the yield and hot-spot temperature of inertial confinement fusion implosions. A scaling of temperature amplification due to magnetization is shown to be in agreement with unperturbed two-dimensional (2D) extended-magnetohydrodynamic simulations. A perfectly spherical hot-spot with an axial magnetic field is predicted to have a maximum temperature amplification of 37%. However, elongation of the hot-spot along field lines raises this value by decreasing the hot-spot surface area along magnetic field lines. A scaling for yield amplification predicts that a magnetic field has the greatest benefit for low-temperature implosions; this is in agreement with simplified 1D simulations, but not 2D simulations where the hot-spot pressure can be significantly reduced by heat-flow anisotropy. Simulations including a P2 drive asymmetry then show that the magnetized yield is a maximum when the capsule drive corrects the hot-spot shape to be round at neutron bang time. An applied magnetic field is also found to be most beneficial for implosions that are more highly perturbed, exceeding the theoretical yield enhancement for symmetric hot-spots. Increasing the magnetic field strength past the value required to magnetize the electrons is beneficial due to the additional suppression of perturbations by magnetic tension.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0081915</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Amplification ; Anisotropy ; Elongation ; Field strength ; Fluid flow ; Heat transmission ; Implosions ; Inertial confinement fusion ; Low temperature ; Magnetic fields ; Magnetism ; Magnetohydrodynamic simulation ; Perturbation ; Plasma physics ; Scaling ; Simulation</subject><ispartof>Physics of plasmas, 2022-04, Vol.29 (4)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3705-2f366221e577f6b8d62741a13470ce9b24fd41337c6a190c65e046be20121a643</citedby><cites>FETCH-LOGICAL-c3705-2f366221e577f6b8d62741a13470ce9b24fd41337c6a190c65e046be20121a643</cites><orcidid>0000-0001-7274-236X ; 0000-0003-3132-0122 ; 0000-0002-0429-9332 ; 0000-0001-9869-4351 ; 0000-0002-6639-3543 ; 0000-0001-8814-3791 ; 0000000198694351 ; 0000000204299332 ; 000000017274236X ; 0000000266393543 ; 0000000188143791 ; 0000000331320122</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/5.0081915$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1860539$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Walsh, C. A.</creatorcontrib><creatorcontrib>O'Neill, S.</creatorcontrib><creatorcontrib>Chittenden, J. P.</creatorcontrib><creatorcontrib>Crilly, A. J.</creatorcontrib><creatorcontrib>Appelbe, B.</creatorcontrib><creatorcontrib>Strozzi, D. J.</creatorcontrib><creatorcontrib>Ho, D.</creatorcontrib><creatorcontrib>Sio, H.</creatorcontrib><creatorcontrib>Pollock, B.</creatorcontrib><creatorcontrib>Divol, L.</creatorcontrib><creatorcontrib>Hartouni, E.</creatorcontrib><creatorcontrib>Rosen, M.</creatorcontrib><creatorcontrib>Logan, B. G.</creatorcontrib><creatorcontrib>Moody, J. D.</creatorcontrib><title>Magnetized ICF implosions: Scaling of temperature and yield enhancement</title><title>Physics of plasmas</title><description>This paper investigates the impact of an applied magnetic field on the yield and hot-spot temperature of inertial confinement fusion implosions. A scaling of temperature amplification due to magnetization is shown to be in agreement with unperturbed two-dimensional (2D) extended-magnetohydrodynamic simulations. A perfectly spherical hot-spot with an axial magnetic field is predicted to have a maximum temperature amplification of 37%. However, elongation of the hot-spot along field lines raises this value by decreasing the hot-spot surface area along magnetic field lines. A scaling for yield amplification predicts that a magnetic field has the greatest benefit for low-temperature implosions; this is in agreement with simplified 1D simulations, but not 2D simulations where the hot-spot pressure can be significantly reduced by heat-flow anisotropy. Simulations including a P2 drive asymmetry then show that the magnetized yield is a maximum when the capsule drive corrects the hot-spot shape to be round at neutron bang time. An applied magnetic field is also found to be most beneficial for implosions that are more highly perturbed, exceeding the theoretical yield enhancement for symmetric hot-spots. Increasing the magnetic field strength past the value required to magnetize the electrons is beneficial due to the additional suppression of perturbations by magnetic tension.</description><subject>Amplification</subject><subject>Anisotropy</subject><subject>Elongation</subject><subject>Field strength</subject><subject>Fluid flow</subject><subject>Heat transmission</subject><subject>Implosions</subject><subject>Inertial confinement fusion</subject><subject>Low temperature</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Magnetohydrodynamic simulation</subject><subject>Perturbation</subject><subject>Plasma physics</subject><subject>Scaling</subject><subject>Simulation</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90E1Lw0AQBuAgCtbqwX8Q9KSQut-beJNia0HxoIK3ZbuZtCnNbtzdCvXXm5KiB8HTzOHhneFNknOMRhgJesNHCOW4wPwgGWCUF5kUkh3udokyIdj7cXISwgohxATPB8n0SS8sxPoLynQ2nqR1065dqJ0Nt-mL0evaLlJXpRGaFryOGw-ptmW6rWFdpmCX2hpowMbT5KjS6wBn-zlM3ib3r-OH7PF5OhvfPWaGSsQzUlEhCMHApazEPC8FkQxrTJlEBoo5YVXJMKXSCI0LZASH7tE5EIQJ1oLRYXLR57oQaxVMHcEsjbMWTFQ4F4jTokOXPWq9-9hAiGrlNt52fykiGC8KQXHeqateGe9C8FCp1teN9luFkdqVqbjal9nZ697uLurY9fODP53_haotq__w3-RvLTt_0A</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Walsh, C. A.</creator><creator>O'Neill, S.</creator><creator>Chittenden, J. P.</creator><creator>Crilly, A. J.</creator><creator>Appelbe, B.</creator><creator>Strozzi, D. J.</creator><creator>Ho, D.</creator><creator>Sio, H.</creator><creator>Pollock, B.</creator><creator>Divol, L.</creator><creator>Hartouni, E.</creator><creator>Rosen, M.</creator><creator>Logan, B. G.</creator><creator>Moody, J. D.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7274-236X</orcidid><orcidid>https://orcid.org/0000-0003-3132-0122</orcidid><orcidid>https://orcid.org/0000-0002-0429-9332</orcidid><orcidid>https://orcid.org/0000-0001-9869-4351</orcidid><orcidid>https://orcid.org/0000-0002-6639-3543</orcidid><orcidid>https://orcid.org/0000-0001-8814-3791</orcidid><orcidid>https://orcid.org/0000000198694351</orcidid><orcidid>https://orcid.org/0000000204299332</orcidid><orcidid>https://orcid.org/000000017274236X</orcidid><orcidid>https://orcid.org/0000000266393543</orcidid><orcidid>https://orcid.org/0000000188143791</orcidid><orcidid>https://orcid.org/0000000331320122</orcidid></search><sort><creationdate>202204</creationdate><title>Magnetized ICF implosions: Scaling of temperature and yield enhancement</title><author>Walsh, C. A. ; O'Neill, S. ; Chittenden, J. P. ; Crilly, A. J. ; Appelbe, B. ; Strozzi, D. J. ; Ho, D. ; Sio, H. ; Pollock, B. ; Divol, L. ; Hartouni, E. ; Rosen, M. ; Logan, B. G. ; Moody, J. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3705-2f366221e577f6b8d62741a13470ce9b24fd41337c6a190c65e046be20121a643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amplification</topic><topic>Anisotropy</topic><topic>Elongation</topic><topic>Field strength</topic><topic>Fluid flow</topic><topic>Heat transmission</topic><topic>Implosions</topic><topic>Inertial confinement fusion</topic><topic>Low temperature</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Magnetohydrodynamic simulation</topic><topic>Perturbation</topic><topic>Plasma physics</topic><topic>Scaling</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walsh, C. A.</creatorcontrib><creatorcontrib>O'Neill, S.</creatorcontrib><creatorcontrib>Chittenden, J. P.</creatorcontrib><creatorcontrib>Crilly, A. J.</creatorcontrib><creatorcontrib>Appelbe, B.</creatorcontrib><creatorcontrib>Strozzi, D. J.</creatorcontrib><creatorcontrib>Ho, D.</creatorcontrib><creatorcontrib>Sio, H.</creatorcontrib><creatorcontrib>Pollock, B.</creatorcontrib><creatorcontrib>Divol, L.</creatorcontrib><creatorcontrib>Hartouni, E.</creatorcontrib><creatorcontrib>Rosen, M.</creatorcontrib><creatorcontrib>Logan, B. G.</creatorcontrib><creatorcontrib>Moody, J. D.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walsh, C. A.</au><au>O'Neill, S.</au><au>Chittenden, J. P.</au><au>Crilly, A. J.</au><au>Appelbe, B.</au><au>Strozzi, D. J.</au><au>Ho, D.</au><au>Sio, H.</au><au>Pollock, B.</au><au>Divol, L.</au><au>Hartouni, E.</au><au>Rosen, M.</au><au>Logan, B. G.</au><au>Moody, J. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetized ICF implosions: Scaling of temperature and yield enhancement</atitle><jtitle>Physics of plasmas</jtitle><date>2022-04</date><risdate>2022</risdate><volume>29</volume><issue>4</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>This paper investigates the impact of an applied magnetic field on the yield and hot-spot temperature of inertial confinement fusion implosions. A scaling of temperature amplification due to magnetization is shown to be in agreement with unperturbed two-dimensional (2D) extended-magnetohydrodynamic simulations. A perfectly spherical hot-spot with an axial magnetic field is predicted to have a maximum temperature amplification of 37%. However, elongation of the hot-spot along field lines raises this value by decreasing the hot-spot surface area along magnetic field lines. A scaling for yield amplification predicts that a magnetic field has the greatest benefit for low-temperature implosions; this is in agreement with simplified 1D simulations, but not 2D simulations where the hot-spot pressure can be significantly reduced by heat-flow anisotropy. Simulations including a P2 drive asymmetry then show that the magnetized yield is a maximum when the capsule drive corrects the hot-spot shape to be round at neutron bang time. An applied magnetic field is also found to be most beneficial for implosions that are more highly perturbed, exceeding the theoretical yield enhancement for symmetric hot-spots. Increasing the magnetic field strength past the value required to magnetize the electrons is beneficial due to the additional suppression of perturbations by magnetic tension.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0081915</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7274-236X</orcidid><orcidid>https://orcid.org/0000-0003-3132-0122</orcidid><orcidid>https://orcid.org/0000-0002-0429-9332</orcidid><orcidid>https://orcid.org/0000-0001-9869-4351</orcidid><orcidid>https://orcid.org/0000-0002-6639-3543</orcidid><orcidid>https://orcid.org/0000-0001-8814-3791</orcidid><orcidid>https://orcid.org/0000000198694351</orcidid><orcidid>https://orcid.org/0000000204299332</orcidid><orcidid>https://orcid.org/000000017274236X</orcidid><orcidid>https://orcid.org/0000000266393543</orcidid><orcidid>https://orcid.org/0000000188143791</orcidid><orcidid>https://orcid.org/0000000331320122</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2022-04, Vol.29 (4) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_osti_scitechconnect_1860539 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Amplification Anisotropy Elongation Field strength Fluid flow Heat transmission Implosions Inertial confinement fusion Low temperature Magnetic fields Magnetism Magnetohydrodynamic simulation Perturbation Plasma physics Scaling Simulation |
title | Magnetized ICF implosions: Scaling of temperature and yield enhancement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T02%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetized%20ICF%20implosions:%20Scaling%20of%20temperature%20and%20yield%20enhancement&rft.jtitle=Physics%20of%20plasmas&rft.au=Walsh,%20C.%20A.&rft.date=2022-04&rft.volume=29&rft.issue=4&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0081915&rft_dat=%3Cproquest_osti_%3E2645996318%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2645996318&rft_id=info:pmid/&rfr_iscdi=true |