Magnetized ICF implosions: Scaling of temperature and yield enhancement

This paper investigates the impact of an applied magnetic field on the yield and hot-spot temperature of inertial confinement fusion implosions. A scaling of temperature amplification due to magnetization is shown to be in agreement with unperturbed two-dimensional (2D) extended-magnetohydrodynamic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2022-04, Vol.29 (4)
Hauptverfasser: Walsh, C. A., O'Neill, S., Chittenden, J. P., Crilly, A. J., Appelbe, B., Strozzi, D. J., Ho, D., Sio, H., Pollock, B., Divol, L., Hartouni, E., Rosen, M., Logan, B. G., Moody, J. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Physics of plasmas
container_volume 29
creator Walsh, C. A.
O'Neill, S.
Chittenden, J. P.
Crilly, A. J.
Appelbe, B.
Strozzi, D. J.
Ho, D.
Sio, H.
Pollock, B.
Divol, L.
Hartouni, E.
Rosen, M.
Logan, B. G.
Moody, J. D.
description This paper investigates the impact of an applied magnetic field on the yield and hot-spot temperature of inertial confinement fusion implosions. A scaling of temperature amplification due to magnetization is shown to be in agreement with unperturbed two-dimensional (2D) extended-magnetohydrodynamic simulations. A perfectly spherical hot-spot with an axial magnetic field is predicted to have a maximum temperature amplification of 37%. However, elongation of the hot-spot along field lines raises this value by decreasing the hot-spot surface area along magnetic field lines. A scaling for yield amplification predicts that a magnetic field has the greatest benefit for low-temperature implosions; this is in agreement with simplified 1D simulations, but not 2D simulations where the hot-spot pressure can be significantly reduced by heat-flow anisotropy. Simulations including a P2 drive asymmetry then show that the magnetized yield is a maximum when the capsule drive corrects the hot-spot shape to be round at neutron bang time. An applied magnetic field is also found to be most beneficial for implosions that are more highly perturbed, exceeding the theoretical yield enhancement for symmetric hot-spots. Increasing the magnetic field strength past the value required to magnetize the electrons is beneficial due to the additional suppression of perturbations by magnetic tension.
doi_str_mv 10.1063/5.0081915
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1860539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2645996318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3705-2f366221e577f6b8d62741a13470ce9b24fd41337c6a190c65e046be20121a643</originalsourceid><addsrcrecordid>eNp90E1Lw0AQBuAgCtbqwX8Q9KSQut-beJNia0HxoIK3ZbuZtCnNbtzdCvXXm5KiB8HTzOHhneFNknOMRhgJesNHCOW4wPwgGWCUF5kUkh3udokyIdj7cXISwgohxATPB8n0SS8sxPoLynQ2nqR1065dqJ0Nt-mL0evaLlJXpRGaFryOGw-ptmW6rWFdpmCX2hpowMbT5KjS6wBn-zlM3ib3r-OH7PF5OhvfPWaGSsQzUlEhCMHApazEPC8FkQxrTJlEBoo5YVXJMKXSCI0LZASH7tE5EIQJ1oLRYXLR57oQaxVMHcEsjbMWTFQ4F4jTokOXPWq9-9hAiGrlNt52fykiGC8KQXHeqateGe9C8FCp1teN9luFkdqVqbjal9nZ697uLurY9fODP53_haotq__w3-RvLTt_0A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645996318</pqid></control><display><type>article</type><title>Magnetized ICF implosions: Scaling of temperature and yield enhancement</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Walsh, C. A. ; O'Neill, S. ; Chittenden, J. P. ; Crilly, A. J. ; Appelbe, B. ; Strozzi, D. J. ; Ho, D. ; Sio, H. ; Pollock, B. ; Divol, L. ; Hartouni, E. ; Rosen, M. ; Logan, B. G. ; Moody, J. D.</creator><creatorcontrib>Walsh, C. A. ; O'Neill, S. ; Chittenden, J. P. ; Crilly, A. J. ; Appelbe, B. ; Strozzi, D. J. ; Ho, D. ; Sio, H. ; Pollock, B. ; Divol, L. ; Hartouni, E. ; Rosen, M. ; Logan, B. G. ; Moody, J. D.</creatorcontrib><description>This paper investigates the impact of an applied magnetic field on the yield and hot-spot temperature of inertial confinement fusion implosions. A scaling of temperature amplification due to magnetization is shown to be in agreement with unperturbed two-dimensional (2D) extended-magnetohydrodynamic simulations. A perfectly spherical hot-spot with an axial magnetic field is predicted to have a maximum temperature amplification of 37%. However, elongation of the hot-spot along field lines raises this value by decreasing the hot-spot surface area along magnetic field lines. A scaling for yield amplification predicts that a magnetic field has the greatest benefit for low-temperature implosions; this is in agreement with simplified 1D simulations, but not 2D simulations where the hot-spot pressure can be significantly reduced by heat-flow anisotropy. Simulations including a P2 drive asymmetry then show that the magnetized yield is a maximum when the capsule drive corrects the hot-spot shape to be round at neutron bang time. An applied magnetic field is also found to be most beneficial for implosions that are more highly perturbed, exceeding the theoretical yield enhancement for symmetric hot-spots. Increasing the magnetic field strength past the value required to magnetize the electrons is beneficial due to the additional suppression of perturbations by magnetic tension.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0081915</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Amplification ; Anisotropy ; Elongation ; Field strength ; Fluid flow ; Heat transmission ; Implosions ; Inertial confinement fusion ; Low temperature ; Magnetic fields ; Magnetism ; Magnetohydrodynamic simulation ; Perturbation ; Plasma physics ; Scaling ; Simulation</subject><ispartof>Physics of plasmas, 2022-04, Vol.29 (4)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3705-2f366221e577f6b8d62741a13470ce9b24fd41337c6a190c65e046be20121a643</citedby><cites>FETCH-LOGICAL-c3705-2f366221e577f6b8d62741a13470ce9b24fd41337c6a190c65e046be20121a643</cites><orcidid>0000-0001-7274-236X ; 0000-0003-3132-0122 ; 0000-0002-0429-9332 ; 0000-0001-9869-4351 ; 0000-0002-6639-3543 ; 0000-0001-8814-3791 ; 0000000198694351 ; 0000000204299332 ; 000000017274236X ; 0000000266393543 ; 0000000188143791 ; 0000000331320122</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/5.0081915$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1860539$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Walsh, C. A.</creatorcontrib><creatorcontrib>O'Neill, S.</creatorcontrib><creatorcontrib>Chittenden, J. P.</creatorcontrib><creatorcontrib>Crilly, A. J.</creatorcontrib><creatorcontrib>Appelbe, B.</creatorcontrib><creatorcontrib>Strozzi, D. J.</creatorcontrib><creatorcontrib>Ho, D.</creatorcontrib><creatorcontrib>Sio, H.</creatorcontrib><creatorcontrib>Pollock, B.</creatorcontrib><creatorcontrib>Divol, L.</creatorcontrib><creatorcontrib>Hartouni, E.</creatorcontrib><creatorcontrib>Rosen, M.</creatorcontrib><creatorcontrib>Logan, B. G.</creatorcontrib><creatorcontrib>Moody, J. D.</creatorcontrib><title>Magnetized ICF implosions: Scaling of temperature and yield enhancement</title><title>Physics of plasmas</title><description>This paper investigates the impact of an applied magnetic field on the yield and hot-spot temperature of inertial confinement fusion implosions. A scaling of temperature amplification due to magnetization is shown to be in agreement with unperturbed two-dimensional (2D) extended-magnetohydrodynamic simulations. A perfectly spherical hot-spot with an axial magnetic field is predicted to have a maximum temperature amplification of 37%. However, elongation of the hot-spot along field lines raises this value by decreasing the hot-spot surface area along magnetic field lines. A scaling for yield amplification predicts that a magnetic field has the greatest benefit for low-temperature implosions; this is in agreement with simplified 1D simulations, but not 2D simulations where the hot-spot pressure can be significantly reduced by heat-flow anisotropy. Simulations including a P2 drive asymmetry then show that the magnetized yield is a maximum when the capsule drive corrects the hot-spot shape to be round at neutron bang time. An applied magnetic field is also found to be most beneficial for implosions that are more highly perturbed, exceeding the theoretical yield enhancement for symmetric hot-spots. Increasing the magnetic field strength past the value required to magnetize the electrons is beneficial due to the additional suppression of perturbations by magnetic tension.</description><subject>Amplification</subject><subject>Anisotropy</subject><subject>Elongation</subject><subject>Field strength</subject><subject>Fluid flow</subject><subject>Heat transmission</subject><subject>Implosions</subject><subject>Inertial confinement fusion</subject><subject>Low temperature</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Magnetohydrodynamic simulation</subject><subject>Perturbation</subject><subject>Plasma physics</subject><subject>Scaling</subject><subject>Simulation</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90E1Lw0AQBuAgCtbqwX8Q9KSQut-beJNia0HxoIK3ZbuZtCnNbtzdCvXXm5KiB8HTzOHhneFNknOMRhgJesNHCOW4wPwgGWCUF5kUkh3udokyIdj7cXISwgohxATPB8n0SS8sxPoLynQ2nqR1065dqJ0Nt-mL0evaLlJXpRGaFryOGw-ptmW6rWFdpmCX2hpowMbT5KjS6wBn-zlM3ib3r-OH7PF5OhvfPWaGSsQzUlEhCMHApazEPC8FkQxrTJlEBoo5YVXJMKXSCI0LZASH7tE5EIQJ1oLRYXLR57oQaxVMHcEsjbMWTFQ4F4jTokOXPWq9-9hAiGrlNt52fykiGC8KQXHeqateGe9C8FCp1teN9luFkdqVqbjal9nZ697uLurY9fODP53_haotq__w3-RvLTt_0A</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Walsh, C. A.</creator><creator>O'Neill, S.</creator><creator>Chittenden, J. P.</creator><creator>Crilly, A. J.</creator><creator>Appelbe, B.</creator><creator>Strozzi, D. J.</creator><creator>Ho, D.</creator><creator>Sio, H.</creator><creator>Pollock, B.</creator><creator>Divol, L.</creator><creator>Hartouni, E.</creator><creator>Rosen, M.</creator><creator>Logan, B. G.</creator><creator>Moody, J. D.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7274-236X</orcidid><orcidid>https://orcid.org/0000-0003-3132-0122</orcidid><orcidid>https://orcid.org/0000-0002-0429-9332</orcidid><orcidid>https://orcid.org/0000-0001-9869-4351</orcidid><orcidid>https://orcid.org/0000-0002-6639-3543</orcidid><orcidid>https://orcid.org/0000-0001-8814-3791</orcidid><orcidid>https://orcid.org/0000000198694351</orcidid><orcidid>https://orcid.org/0000000204299332</orcidid><orcidid>https://orcid.org/000000017274236X</orcidid><orcidid>https://orcid.org/0000000266393543</orcidid><orcidid>https://orcid.org/0000000188143791</orcidid><orcidid>https://orcid.org/0000000331320122</orcidid></search><sort><creationdate>202204</creationdate><title>Magnetized ICF implosions: Scaling of temperature and yield enhancement</title><author>Walsh, C. A. ; O'Neill, S. ; Chittenden, J. P. ; Crilly, A. J. ; Appelbe, B. ; Strozzi, D. J. ; Ho, D. ; Sio, H. ; Pollock, B. ; Divol, L. ; Hartouni, E. ; Rosen, M. ; Logan, B. G. ; Moody, J. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3705-2f366221e577f6b8d62741a13470ce9b24fd41337c6a190c65e046be20121a643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amplification</topic><topic>Anisotropy</topic><topic>Elongation</topic><topic>Field strength</topic><topic>Fluid flow</topic><topic>Heat transmission</topic><topic>Implosions</topic><topic>Inertial confinement fusion</topic><topic>Low temperature</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Magnetohydrodynamic simulation</topic><topic>Perturbation</topic><topic>Plasma physics</topic><topic>Scaling</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walsh, C. A.</creatorcontrib><creatorcontrib>O'Neill, S.</creatorcontrib><creatorcontrib>Chittenden, J. P.</creatorcontrib><creatorcontrib>Crilly, A. J.</creatorcontrib><creatorcontrib>Appelbe, B.</creatorcontrib><creatorcontrib>Strozzi, D. J.</creatorcontrib><creatorcontrib>Ho, D.</creatorcontrib><creatorcontrib>Sio, H.</creatorcontrib><creatorcontrib>Pollock, B.</creatorcontrib><creatorcontrib>Divol, L.</creatorcontrib><creatorcontrib>Hartouni, E.</creatorcontrib><creatorcontrib>Rosen, M.</creatorcontrib><creatorcontrib>Logan, B. G.</creatorcontrib><creatorcontrib>Moody, J. D.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walsh, C. A.</au><au>O'Neill, S.</au><au>Chittenden, J. P.</au><au>Crilly, A. J.</au><au>Appelbe, B.</au><au>Strozzi, D. J.</au><au>Ho, D.</au><au>Sio, H.</au><au>Pollock, B.</au><au>Divol, L.</au><au>Hartouni, E.</au><au>Rosen, M.</au><au>Logan, B. G.</au><au>Moody, J. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetized ICF implosions: Scaling of temperature and yield enhancement</atitle><jtitle>Physics of plasmas</jtitle><date>2022-04</date><risdate>2022</risdate><volume>29</volume><issue>4</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>This paper investigates the impact of an applied magnetic field on the yield and hot-spot temperature of inertial confinement fusion implosions. A scaling of temperature amplification due to magnetization is shown to be in agreement with unperturbed two-dimensional (2D) extended-magnetohydrodynamic simulations. A perfectly spherical hot-spot with an axial magnetic field is predicted to have a maximum temperature amplification of 37%. However, elongation of the hot-spot along field lines raises this value by decreasing the hot-spot surface area along magnetic field lines. A scaling for yield amplification predicts that a magnetic field has the greatest benefit for low-temperature implosions; this is in agreement with simplified 1D simulations, but not 2D simulations where the hot-spot pressure can be significantly reduced by heat-flow anisotropy. Simulations including a P2 drive asymmetry then show that the magnetized yield is a maximum when the capsule drive corrects the hot-spot shape to be round at neutron bang time. An applied magnetic field is also found to be most beneficial for implosions that are more highly perturbed, exceeding the theoretical yield enhancement for symmetric hot-spots. Increasing the magnetic field strength past the value required to magnetize the electrons is beneficial due to the additional suppression of perturbations by magnetic tension.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0081915</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7274-236X</orcidid><orcidid>https://orcid.org/0000-0003-3132-0122</orcidid><orcidid>https://orcid.org/0000-0002-0429-9332</orcidid><orcidid>https://orcid.org/0000-0001-9869-4351</orcidid><orcidid>https://orcid.org/0000-0002-6639-3543</orcidid><orcidid>https://orcid.org/0000-0001-8814-3791</orcidid><orcidid>https://orcid.org/0000000198694351</orcidid><orcidid>https://orcid.org/0000000204299332</orcidid><orcidid>https://orcid.org/000000017274236X</orcidid><orcidid>https://orcid.org/0000000266393543</orcidid><orcidid>https://orcid.org/0000000188143791</orcidid><orcidid>https://orcid.org/0000000331320122</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2022-04, Vol.29 (4)
issn 1070-664X
1089-7674
language eng
recordid cdi_osti_scitechconnect_1860539
source AIP Journals Complete; Alma/SFX Local Collection
subjects Amplification
Anisotropy
Elongation
Field strength
Fluid flow
Heat transmission
Implosions
Inertial confinement fusion
Low temperature
Magnetic fields
Magnetism
Magnetohydrodynamic simulation
Perturbation
Plasma physics
Scaling
Simulation
title Magnetized ICF implosions: Scaling of temperature and yield enhancement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T02%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetized%20ICF%20implosions:%20Scaling%20of%20temperature%20and%20yield%20enhancement&rft.jtitle=Physics%20of%20plasmas&rft.au=Walsh,%20C.%20A.&rft.date=2022-04&rft.volume=29&rft.issue=4&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0081915&rft_dat=%3Cproquest_osti_%3E2645996318%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2645996318&rft_id=info:pmid/&rfr_iscdi=true