Quantum Shells Boost the Optical Gain of Lasing Media
Auger decay of multiple excitons represents a significant obstacle to photonic applications of semiconductor quantum dots (QDs). This nonradiative process is particularly detrimental to the performance of QD-based electroluminescent and lasing devices. Here, we demonstrate that semiconductor quantum...
Gespeichert in:
Veröffentlicht in: | ACS nano 2022-02, Vol.16 (2), p.3017-3026 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3026 |
---|---|
container_issue | 2 |
container_start_page | 3017 |
container_title | ACS nano |
container_volume | 16 |
creator | Cassidy, James Diroll, Benjamin T Mondal, Navendu Berkinsky, David B Zhao, Kehui Harankahage, Dulanjan Porotnikov, Dmitry Gately, Reagan Khon, Dmitriy Proppe, Andrew Bawendi, Moungi G Schaller, Richard D Malko, Anton V Zamkov, Mikhail |
description | Auger decay of multiple excitons represents a significant obstacle to photonic applications of semiconductor quantum dots (QDs). This nonradiative process is particularly detrimental to the performance of QD-based electroluminescent and lasing devices. Here, we demonstrate that semiconductor quantum shells with an “inverted” QD geometry inhibit Auger recombination, allowing substantial improvements to their multiexciton characteristics. By promoting a spatial separation between multiple excitons, the quantum shell geometry leads to ultralong biexciton lifetimes (>10 ns) and a large biexciton quantum yield. Furthermore, the architecture of quantum shells induces an exciton–exciton repulsion, which splits exciton and biexciton optical transitions, giving rise to an Auger-inactive single-exciton gain mode. In this regime, quantum shells exhibit the longest optical gain lifetime reported for colloidal QDs to date (>6 ns), which makes this geometry an attractive candidate for the development of optically and electrically pumped gain media. |
doi_str_mv | 10.1021/acsnano.1c10404 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1859178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2626891358</sourcerecordid><originalsourceid>FETCH-LOGICAL-a401t-87f8ee2eaf8b65b06443adb101e293cfa61b23b2b85bedcca1a12f58706583723</originalsourceid><addsrcrecordid>eNp1kMFLwzAUh4Mobk7P3qR4EqRbXtKk6VGHTmEyRAVvIUlT19Els2kP_vd2tO7m6b3D9_vx3ofQJeApYAIzZYJTzk_BAE5wcoTGkFEeY8E_jw87gxE6C2GDMUtFyk_RiDIgWcZgjNhrq1zTbqO3ta2qEN17H5qoWdtotWtKo6pooUoX-SJaqlC6r-jF5qU6RyeFqoK9GOYEfTw-vM-f4uVq8Ty_W8YqwdDEIi2EtcSqQmjONOZJQlWuAYMlGTWF4qAJ1UQLpm1ujAIFpGAixZwJmhI6Qdd9b3dUKYMpG2vWxjtnTSNBsAxS0UE3PbSr_XdrQyO3ZTDdN8pZ3wZJOOEiA8r26KxHTe1DqG0hd3W5VfWPBCz3QuUgVA5Cu8TVUN7qrc0P_J_BDrjtgS4pN76tXSfk37pfaBZ_Dg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626891358</pqid></control><display><type>article</type><title>Quantum Shells Boost the Optical Gain of Lasing Media</title><source>ACS Journals: American Chemical Society Web Editions</source><creator>Cassidy, James ; Diroll, Benjamin T ; Mondal, Navendu ; Berkinsky, David B ; Zhao, Kehui ; Harankahage, Dulanjan ; Porotnikov, Dmitry ; Gately, Reagan ; Khon, Dmitriy ; Proppe, Andrew ; Bawendi, Moungi G ; Schaller, Richard D ; Malko, Anton V ; Zamkov, Mikhail</creator><creatorcontrib>Cassidy, James ; Diroll, Benjamin T ; Mondal, Navendu ; Berkinsky, David B ; Zhao, Kehui ; Harankahage, Dulanjan ; Porotnikov, Dmitry ; Gately, Reagan ; Khon, Dmitriy ; Proppe, Andrew ; Bawendi, Moungi G ; Schaller, Richard D ; Malko, Anton V ; Zamkov, Mikhail</creatorcontrib><description>Auger decay of multiple excitons represents a significant obstacle to photonic applications of semiconductor quantum dots (QDs). This nonradiative process is particularly detrimental to the performance of QD-based electroluminescent and lasing devices. Here, we demonstrate that semiconductor quantum shells with an “inverted” QD geometry inhibit Auger recombination, allowing substantial improvements to their multiexciton characteristics. By promoting a spatial separation between multiple excitons, the quantum shell geometry leads to ultralong biexciton lifetimes (>10 ns) and a large biexciton quantum yield. Furthermore, the architecture of quantum shells induces an exciton–exciton repulsion, which splits exciton and biexciton optical transitions, giving rise to an Auger-inactive single-exciton gain mode. In this regime, quantum shells exhibit the longest optical gain lifetime reported for colloidal QDs to date (>6 ns), which makes this geometry an attractive candidate for the development of optically and electrically pumped gain media.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.1c10404</identifier><identifier>PMID: 35129951</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2022-02, Vol.16 (2), p.3017-3026</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a401t-87f8ee2eaf8b65b06443adb101e293cfa61b23b2b85bedcca1a12f58706583723</citedby><cites>FETCH-LOGICAL-a401t-87f8ee2eaf8b65b06443adb101e293cfa61b23b2b85bedcca1a12f58706583723</cites><orcidid>0000-0001-6410-7112 ; 0000-0002-8638-2972 ; 0000-0003-3488-0213 ; 0000-0003-2220-4365 ; 0000-0001-9696-8830 ; 0000-0001-5002-9678 ; 0000000164107112 ; 0000000150029678 ; 0000000196968830 ; 0000000286382972 ; 0000000322204365 ; 0000000334880213</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.1c10404$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.1c10404$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,782,786,887,2769,27085,27933,27934,56747,56797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35129951$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1859178$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cassidy, James</creatorcontrib><creatorcontrib>Diroll, Benjamin T</creatorcontrib><creatorcontrib>Mondal, Navendu</creatorcontrib><creatorcontrib>Berkinsky, David B</creatorcontrib><creatorcontrib>Zhao, Kehui</creatorcontrib><creatorcontrib>Harankahage, Dulanjan</creatorcontrib><creatorcontrib>Porotnikov, Dmitry</creatorcontrib><creatorcontrib>Gately, Reagan</creatorcontrib><creatorcontrib>Khon, Dmitriy</creatorcontrib><creatorcontrib>Proppe, Andrew</creatorcontrib><creatorcontrib>Bawendi, Moungi G</creatorcontrib><creatorcontrib>Schaller, Richard D</creatorcontrib><creatorcontrib>Malko, Anton V</creatorcontrib><creatorcontrib>Zamkov, Mikhail</creatorcontrib><title>Quantum Shells Boost the Optical Gain of Lasing Media</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Auger decay of multiple excitons represents a significant obstacle to photonic applications of semiconductor quantum dots (QDs). This nonradiative process is particularly detrimental to the performance of QD-based electroluminescent and lasing devices. Here, we demonstrate that semiconductor quantum shells with an “inverted” QD geometry inhibit Auger recombination, allowing substantial improvements to their multiexciton characteristics. By promoting a spatial separation between multiple excitons, the quantum shell geometry leads to ultralong biexciton lifetimes (>10 ns) and a large biexciton quantum yield. Furthermore, the architecture of quantum shells induces an exciton–exciton repulsion, which splits exciton and biexciton optical transitions, giving rise to an Auger-inactive single-exciton gain mode. In this regime, quantum shells exhibit the longest optical gain lifetime reported for colloidal QDs to date (>6 ns), which makes this geometry an attractive candidate for the development of optically and electrically pumped gain media.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUh4Mobk7P3qR4EqRbXtKk6VGHTmEyRAVvIUlT19Els2kP_vd2tO7m6b3D9_vx3ofQJeApYAIzZYJTzk_BAE5wcoTGkFEeY8E_jw87gxE6C2GDMUtFyk_RiDIgWcZgjNhrq1zTbqO3ta2qEN17H5qoWdtotWtKo6pooUoX-SJaqlC6r-jF5qU6RyeFqoK9GOYEfTw-vM-f4uVq8Ty_W8YqwdDEIi2EtcSqQmjONOZJQlWuAYMlGTWF4qAJ1UQLpm1ujAIFpGAixZwJmhI6Qdd9b3dUKYMpG2vWxjtnTSNBsAxS0UE3PbSr_XdrQyO3ZTDdN8pZ3wZJOOEiA8r26KxHTe1DqG0hd3W5VfWPBCz3QuUgVA5Cu8TVUN7qrc0P_J_BDrjtgS4pN76tXSfk37pfaBZ_Dg</recordid><startdate>20220222</startdate><enddate>20220222</enddate><creator>Cassidy, James</creator><creator>Diroll, Benjamin T</creator><creator>Mondal, Navendu</creator><creator>Berkinsky, David B</creator><creator>Zhao, Kehui</creator><creator>Harankahage, Dulanjan</creator><creator>Porotnikov, Dmitry</creator><creator>Gately, Reagan</creator><creator>Khon, Dmitriy</creator><creator>Proppe, Andrew</creator><creator>Bawendi, Moungi G</creator><creator>Schaller, Richard D</creator><creator>Malko, Anton V</creator><creator>Zamkov, Mikhail</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6410-7112</orcidid><orcidid>https://orcid.org/0000-0002-8638-2972</orcidid><orcidid>https://orcid.org/0000-0003-3488-0213</orcidid><orcidid>https://orcid.org/0000-0003-2220-4365</orcidid><orcidid>https://orcid.org/0000-0001-9696-8830</orcidid><orcidid>https://orcid.org/0000-0001-5002-9678</orcidid><orcidid>https://orcid.org/0000000164107112</orcidid><orcidid>https://orcid.org/0000000150029678</orcidid><orcidid>https://orcid.org/0000000196968830</orcidid><orcidid>https://orcid.org/0000000286382972</orcidid><orcidid>https://orcid.org/0000000322204365</orcidid><orcidid>https://orcid.org/0000000334880213</orcidid></search><sort><creationdate>20220222</creationdate><title>Quantum Shells Boost the Optical Gain of Lasing Media</title><author>Cassidy, James ; Diroll, Benjamin T ; Mondal, Navendu ; Berkinsky, David B ; Zhao, Kehui ; Harankahage, Dulanjan ; Porotnikov, Dmitry ; Gately, Reagan ; Khon, Dmitriy ; Proppe, Andrew ; Bawendi, Moungi G ; Schaller, Richard D ; Malko, Anton V ; Zamkov, Mikhail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a401t-87f8ee2eaf8b65b06443adb101e293cfa61b23b2b85bedcca1a12f58706583723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cassidy, James</creatorcontrib><creatorcontrib>Diroll, Benjamin T</creatorcontrib><creatorcontrib>Mondal, Navendu</creatorcontrib><creatorcontrib>Berkinsky, David B</creatorcontrib><creatorcontrib>Zhao, Kehui</creatorcontrib><creatorcontrib>Harankahage, Dulanjan</creatorcontrib><creatorcontrib>Porotnikov, Dmitry</creatorcontrib><creatorcontrib>Gately, Reagan</creatorcontrib><creatorcontrib>Khon, Dmitriy</creatorcontrib><creatorcontrib>Proppe, Andrew</creatorcontrib><creatorcontrib>Bawendi, Moungi G</creatorcontrib><creatorcontrib>Schaller, Richard D</creatorcontrib><creatorcontrib>Malko, Anton V</creatorcontrib><creatorcontrib>Zamkov, Mikhail</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cassidy, James</au><au>Diroll, Benjamin T</au><au>Mondal, Navendu</au><au>Berkinsky, David B</au><au>Zhao, Kehui</au><au>Harankahage, Dulanjan</au><au>Porotnikov, Dmitry</au><au>Gately, Reagan</au><au>Khon, Dmitriy</au><au>Proppe, Andrew</au><au>Bawendi, Moungi G</au><au>Schaller, Richard D</au><au>Malko, Anton V</au><au>Zamkov, Mikhail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Shells Boost the Optical Gain of Lasing Media</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2022-02-22</date><risdate>2022</risdate><volume>16</volume><issue>2</issue><spage>3017</spage><epage>3026</epage><pages>3017-3026</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Auger decay of multiple excitons represents a significant obstacle to photonic applications of semiconductor quantum dots (QDs). This nonradiative process is particularly detrimental to the performance of QD-based electroluminescent and lasing devices. Here, we demonstrate that semiconductor quantum shells with an “inverted” QD geometry inhibit Auger recombination, allowing substantial improvements to their multiexciton characteristics. By promoting a spatial separation between multiple excitons, the quantum shell geometry leads to ultralong biexciton lifetimes (>10 ns) and a large biexciton quantum yield. Furthermore, the architecture of quantum shells induces an exciton–exciton repulsion, which splits exciton and biexciton optical transitions, giving rise to an Auger-inactive single-exciton gain mode. In this regime, quantum shells exhibit the longest optical gain lifetime reported for colloidal QDs to date (>6 ns), which makes this geometry an attractive candidate for the development of optically and electrically pumped gain media.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35129951</pmid><doi>10.1021/acsnano.1c10404</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6410-7112</orcidid><orcidid>https://orcid.org/0000-0002-8638-2972</orcidid><orcidid>https://orcid.org/0000-0003-3488-0213</orcidid><orcidid>https://orcid.org/0000-0003-2220-4365</orcidid><orcidid>https://orcid.org/0000-0001-9696-8830</orcidid><orcidid>https://orcid.org/0000-0001-5002-9678</orcidid><orcidid>https://orcid.org/0000000164107112</orcidid><orcidid>https://orcid.org/0000000150029678</orcidid><orcidid>https://orcid.org/0000000196968830</orcidid><orcidid>https://orcid.org/0000000286382972</orcidid><orcidid>https://orcid.org/0000000322204365</orcidid><orcidid>https://orcid.org/0000000334880213</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2022-02, Vol.16 (2), p.3017-3026 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_osti_scitechconnect_1859178 |
source | ACS Journals: American Chemical Society Web Editions |
title | Quantum Shells Boost the Optical Gain of Lasing Media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T17%3A24%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Shells%20Boost%20the%20Optical%20Gain%20of%20Lasing%20Media&rft.jtitle=ACS%20nano&rft.au=Cassidy,%20James&rft.date=2022-02-22&rft.volume=16&rft.issue=2&rft.spage=3017&rft.epage=3026&rft.pages=3017-3026&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.1c10404&rft_dat=%3Cproquest_osti_%3E2626891358%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2626891358&rft_id=info:pmid/35129951&rfr_iscdi=true |