Quantum Shells Boost the Optical Gain of Lasing Media

Auger decay of multiple excitons represents a significant obstacle to photonic applications of semiconductor quantum dots (QDs). This nonradiative process is particularly detrimental to the performance of QD-based electroluminescent and lasing devices. Here, we demonstrate that semiconductor quantum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2022-02, Vol.16 (2), p.3017-3026
Hauptverfasser: Cassidy, James, Diroll, Benjamin T, Mondal, Navendu, Berkinsky, David B, Zhao, Kehui, Harankahage, Dulanjan, Porotnikov, Dmitry, Gately, Reagan, Khon, Dmitriy, Proppe, Andrew, Bawendi, Moungi G, Schaller, Richard D, Malko, Anton V, Zamkov, Mikhail
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3026
container_issue 2
container_start_page 3017
container_title ACS nano
container_volume 16
creator Cassidy, James
Diroll, Benjamin T
Mondal, Navendu
Berkinsky, David B
Zhao, Kehui
Harankahage, Dulanjan
Porotnikov, Dmitry
Gately, Reagan
Khon, Dmitriy
Proppe, Andrew
Bawendi, Moungi G
Schaller, Richard D
Malko, Anton V
Zamkov, Mikhail
description Auger decay of multiple excitons represents a significant obstacle to photonic applications of semiconductor quantum dots (QDs). This nonradiative process is particularly detrimental to the performance of QD-based electroluminescent and lasing devices. Here, we demonstrate that semiconductor quantum shells with an “inverted” QD geometry inhibit Auger recombination, allowing substantial improvements to their multiexciton characteristics. By promoting a spatial separation between multiple excitons, the quantum shell geometry leads to ultralong biexciton lifetimes (>10 ns) and a large biexciton quantum yield. Furthermore, the architecture of quantum shells induces an exciton–exciton repulsion, which splits exciton and biexciton optical transitions, giving rise to an Auger-inactive single-exciton gain mode. In this regime, quantum shells exhibit the longest optical gain lifetime reported for colloidal QDs to date (>6 ns), which makes this geometry an attractive candidate for the development of optically and electrically pumped gain media.
doi_str_mv 10.1021/acsnano.1c10404
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1859178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2626891358</sourcerecordid><originalsourceid>FETCH-LOGICAL-a401t-87f8ee2eaf8b65b06443adb101e293cfa61b23b2b85bedcca1a12f58706583723</originalsourceid><addsrcrecordid>eNp1kMFLwzAUh4Mobk7P3qR4EqRbXtKk6VGHTmEyRAVvIUlT19Els2kP_vd2tO7m6b3D9_vx3ofQJeApYAIzZYJTzk_BAE5wcoTGkFEeY8E_jw87gxE6C2GDMUtFyk_RiDIgWcZgjNhrq1zTbqO3ta2qEN17H5qoWdtotWtKo6pooUoX-SJaqlC6r-jF5qU6RyeFqoK9GOYEfTw-vM-f4uVq8Ty_W8YqwdDEIi2EtcSqQmjONOZJQlWuAYMlGTWF4qAJ1UQLpm1ujAIFpGAixZwJmhI6Qdd9b3dUKYMpG2vWxjtnTSNBsAxS0UE3PbSr_XdrQyO3ZTDdN8pZ3wZJOOEiA8r26KxHTe1DqG0hd3W5VfWPBCz3QuUgVA5Cu8TVUN7qrc0P_J_BDrjtgS4pN76tXSfk37pfaBZ_Dg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626891358</pqid></control><display><type>article</type><title>Quantum Shells Boost the Optical Gain of Lasing Media</title><source>ACS Journals: American Chemical Society Web Editions</source><creator>Cassidy, James ; Diroll, Benjamin T ; Mondal, Navendu ; Berkinsky, David B ; Zhao, Kehui ; Harankahage, Dulanjan ; Porotnikov, Dmitry ; Gately, Reagan ; Khon, Dmitriy ; Proppe, Andrew ; Bawendi, Moungi G ; Schaller, Richard D ; Malko, Anton V ; Zamkov, Mikhail</creator><creatorcontrib>Cassidy, James ; Diroll, Benjamin T ; Mondal, Navendu ; Berkinsky, David B ; Zhao, Kehui ; Harankahage, Dulanjan ; Porotnikov, Dmitry ; Gately, Reagan ; Khon, Dmitriy ; Proppe, Andrew ; Bawendi, Moungi G ; Schaller, Richard D ; Malko, Anton V ; Zamkov, Mikhail</creatorcontrib><description>Auger decay of multiple excitons represents a significant obstacle to photonic applications of semiconductor quantum dots (QDs). This nonradiative process is particularly detrimental to the performance of QD-based electroluminescent and lasing devices. Here, we demonstrate that semiconductor quantum shells with an “inverted” QD geometry inhibit Auger recombination, allowing substantial improvements to their multiexciton characteristics. By promoting a spatial separation between multiple excitons, the quantum shell geometry leads to ultralong biexciton lifetimes (&gt;10 ns) and a large biexciton quantum yield. Furthermore, the architecture of quantum shells induces an exciton–exciton repulsion, which splits exciton and biexciton optical transitions, giving rise to an Auger-inactive single-exciton gain mode. In this regime, quantum shells exhibit the longest optical gain lifetime reported for colloidal QDs to date (&gt;6 ns), which makes this geometry an attractive candidate for the development of optically and electrically pumped gain media.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.1c10404</identifier><identifier>PMID: 35129951</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2022-02, Vol.16 (2), p.3017-3026</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a401t-87f8ee2eaf8b65b06443adb101e293cfa61b23b2b85bedcca1a12f58706583723</citedby><cites>FETCH-LOGICAL-a401t-87f8ee2eaf8b65b06443adb101e293cfa61b23b2b85bedcca1a12f58706583723</cites><orcidid>0000-0001-6410-7112 ; 0000-0002-8638-2972 ; 0000-0003-3488-0213 ; 0000-0003-2220-4365 ; 0000-0001-9696-8830 ; 0000-0001-5002-9678 ; 0000000164107112 ; 0000000150029678 ; 0000000196968830 ; 0000000286382972 ; 0000000322204365 ; 0000000334880213</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.1c10404$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.1c10404$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,782,786,887,2769,27085,27933,27934,56747,56797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35129951$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1859178$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cassidy, James</creatorcontrib><creatorcontrib>Diroll, Benjamin T</creatorcontrib><creatorcontrib>Mondal, Navendu</creatorcontrib><creatorcontrib>Berkinsky, David B</creatorcontrib><creatorcontrib>Zhao, Kehui</creatorcontrib><creatorcontrib>Harankahage, Dulanjan</creatorcontrib><creatorcontrib>Porotnikov, Dmitry</creatorcontrib><creatorcontrib>Gately, Reagan</creatorcontrib><creatorcontrib>Khon, Dmitriy</creatorcontrib><creatorcontrib>Proppe, Andrew</creatorcontrib><creatorcontrib>Bawendi, Moungi G</creatorcontrib><creatorcontrib>Schaller, Richard D</creatorcontrib><creatorcontrib>Malko, Anton V</creatorcontrib><creatorcontrib>Zamkov, Mikhail</creatorcontrib><title>Quantum Shells Boost the Optical Gain of Lasing Media</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Auger decay of multiple excitons represents a significant obstacle to photonic applications of semiconductor quantum dots (QDs). This nonradiative process is particularly detrimental to the performance of QD-based electroluminescent and lasing devices. Here, we demonstrate that semiconductor quantum shells with an “inverted” QD geometry inhibit Auger recombination, allowing substantial improvements to their multiexciton characteristics. By promoting a spatial separation between multiple excitons, the quantum shell geometry leads to ultralong biexciton lifetimes (&gt;10 ns) and a large biexciton quantum yield. Furthermore, the architecture of quantum shells induces an exciton–exciton repulsion, which splits exciton and biexciton optical transitions, giving rise to an Auger-inactive single-exciton gain mode. In this regime, quantum shells exhibit the longest optical gain lifetime reported for colloidal QDs to date (&gt;6 ns), which makes this geometry an attractive candidate for the development of optically and electrically pumped gain media.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUh4Mobk7P3qR4EqRbXtKk6VGHTmEyRAVvIUlT19Els2kP_vd2tO7m6b3D9_vx3ofQJeApYAIzZYJTzk_BAE5wcoTGkFEeY8E_jw87gxE6C2GDMUtFyk_RiDIgWcZgjNhrq1zTbqO3ta2qEN17H5qoWdtotWtKo6pooUoX-SJaqlC6r-jF5qU6RyeFqoK9GOYEfTw-vM-f4uVq8Ty_W8YqwdDEIi2EtcSqQmjONOZJQlWuAYMlGTWF4qAJ1UQLpm1ujAIFpGAixZwJmhI6Qdd9b3dUKYMpG2vWxjtnTSNBsAxS0UE3PbSr_XdrQyO3ZTDdN8pZ3wZJOOEiA8r26KxHTe1DqG0hd3W5VfWPBCz3QuUgVA5Cu8TVUN7qrc0P_J_BDrjtgS4pN76tXSfk37pfaBZ_Dg</recordid><startdate>20220222</startdate><enddate>20220222</enddate><creator>Cassidy, James</creator><creator>Diroll, Benjamin T</creator><creator>Mondal, Navendu</creator><creator>Berkinsky, David B</creator><creator>Zhao, Kehui</creator><creator>Harankahage, Dulanjan</creator><creator>Porotnikov, Dmitry</creator><creator>Gately, Reagan</creator><creator>Khon, Dmitriy</creator><creator>Proppe, Andrew</creator><creator>Bawendi, Moungi G</creator><creator>Schaller, Richard D</creator><creator>Malko, Anton V</creator><creator>Zamkov, Mikhail</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6410-7112</orcidid><orcidid>https://orcid.org/0000-0002-8638-2972</orcidid><orcidid>https://orcid.org/0000-0003-3488-0213</orcidid><orcidid>https://orcid.org/0000-0003-2220-4365</orcidid><orcidid>https://orcid.org/0000-0001-9696-8830</orcidid><orcidid>https://orcid.org/0000-0001-5002-9678</orcidid><orcidid>https://orcid.org/0000000164107112</orcidid><orcidid>https://orcid.org/0000000150029678</orcidid><orcidid>https://orcid.org/0000000196968830</orcidid><orcidid>https://orcid.org/0000000286382972</orcidid><orcidid>https://orcid.org/0000000322204365</orcidid><orcidid>https://orcid.org/0000000334880213</orcidid></search><sort><creationdate>20220222</creationdate><title>Quantum Shells Boost the Optical Gain of Lasing Media</title><author>Cassidy, James ; Diroll, Benjamin T ; Mondal, Navendu ; Berkinsky, David B ; Zhao, Kehui ; Harankahage, Dulanjan ; Porotnikov, Dmitry ; Gately, Reagan ; Khon, Dmitriy ; Proppe, Andrew ; Bawendi, Moungi G ; Schaller, Richard D ; Malko, Anton V ; Zamkov, Mikhail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a401t-87f8ee2eaf8b65b06443adb101e293cfa61b23b2b85bedcca1a12f58706583723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cassidy, James</creatorcontrib><creatorcontrib>Diroll, Benjamin T</creatorcontrib><creatorcontrib>Mondal, Navendu</creatorcontrib><creatorcontrib>Berkinsky, David B</creatorcontrib><creatorcontrib>Zhao, Kehui</creatorcontrib><creatorcontrib>Harankahage, Dulanjan</creatorcontrib><creatorcontrib>Porotnikov, Dmitry</creatorcontrib><creatorcontrib>Gately, Reagan</creatorcontrib><creatorcontrib>Khon, Dmitriy</creatorcontrib><creatorcontrib>Proppe, Andrew</creatorcontrib><creatorcontrib>Bawendi, Moungi G</creatorcontrib><creatorcontrib>Schaller, Richard D</creatorcontrib><creatorcontrib>Malko, Anton V</creatorcontrib><creatorcontrib>Zamkov, Mikhail</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cassidy, James</au><au>Diroll, Benjamin T</au><au>Mondal, Navendu</au><au>Berkinsky, David B</au><au>Zhao, Kehui</au><au>Harankahage, Dulanjan</au><au>Porotnikov, Dmitry</au><au>Gately, Reagan</au><au>Khon, Dmitriy</au><au>Proppe, Andrew</au><au>Bawendi, Moungi G</au><au>Schaller, Richard D</au><au>Malko, Anton V</au><au>Zamkov, Mikhail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Shells Boost the Optical Gain of Lasing Media</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2022-02-22</date><risdate>2022</risdate><volume>16</volume><issue>2</issue><spage>3017</spage><epage>3026</epage><pages>3017-3026</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Auger decay of multiple excitons represents a significant obstacle to photonic applications of semiconductor quantum dots (QDs). This nonradiative process is particularly detrimental to the performance of QD-based electroluminescent and lasing devices. Here, we demonstrate that semiconductor quantum shells with an “inverted” QD geometry inhibit Auger recombination, allowing substantial improvements to their multiexciton characteristics. By promoting a spatial separation between multiple excitons, the quantum shell geometry leads to ultralong biexciton lifetimes (&gt;10 ns) and a large biexciton quantum yield. Furthermore, the architecture of quantum shells induces an exciton–exciton repulsion, which splits exciton and biexciton optical transitions, giving rise to an Auger-inactive single-exciton gain mode. In this regime, quantum shells exhibit the longest optical gain lifetime reported for colloidal QDs to date (&gt;6 ns), which makes this geometry an attractive candidate for the development of optically and electrically pumped gain media.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35129951</pmid><doi>10.1021/acsnano.1c10404</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6410-7112</orcidid><orcidid>https://orcid.org/0000-0002-8638-2972</orcidid><orcidid>https://orcid.org/0000-0003-3488-0213</orcidid><orcidid>https://orcid.org/0000-0003-2220-4365</orcidid><orcidid>https://orcid.org/0000-0001-9696-8830</orcidid><orcidid>https://orcid.org/0000-0001-5002-9678</orcidid><orcidid>https://orcid.org/0000000164107112</orcidid><orcidid>https://orcid.org/0000000150029678</orcidid><orcidid>https://orcid.org/0000000196968830</orcidid><orcidid>https://orcid.org/0000000286382972</orcidid><orcidid>https://orcid.org/0000000322204365</orcidid><orcidid>https://orcid.org/0000000334880213</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2022-02, Vol.16 (2), p.3017-3026
issn 1936-0851
1936-086X
language eng
recordid cdi_osti_scitechconnect_1859178
source ACS Journals: American Chemical Society Web Editions
title Quantum Shells Boost the Optical Gain of Lasing Media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T17%3A24%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Shells%20Boost%20the%20Optical%20Gain%20of%20Lasing%20Media&rft.jtitle=ACS%20nano&rft.au=Cassidy,%20James&rft.date=2022-02-22&rft.volume=16&rft.issue=2&rft.spage=3017&rft.epage=3026&rft.pages=3017-3026&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.1c10404&rft_dat=%3Cproquest_osti_%3E2626891358%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2626891358&rft_id=info:pmid/35129951&rfr_iscdi=true