Controlled Hysteresis of Conductance in Molecular Tunneling Junctions

The problem this paper addresses is the origin of the hysteretic behavior in two-terminal molecular junctions made from an EGaIn electrode and self-assembled monolayers of alkanethiolates terminated in chelates (transition metal dichlorides complexed with 2,2′-bipyridine; BIPY-MCl2). The hysteresis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2022-03, Vol.16 (3), p.4206-4216
Hauptverfasser: Park, Junwoo, Kodaimati, Mohamad S, Belding, Lee, Root, Samuel E, Schatz, George C, Whitesides, George M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4216
container_issue 3
container_start_page 4206
container_title ACS nano
container_volume 16
creator Park, Junwoo
Kodaimati, Mohamad S
Belding, Lee
Root, Samuel E
Schatz, George C
Whitesides, George M
description The problem this paper addresses is the origin of the hysteretic behavior in two-terminal molecular junctions made from an EGaIn electrode and self-assembled monolayers of alkanethiolates terminated in chelates (transition metal dichlorides complexed with 2,2′-bipyridine; BIPY-MCl2). The hysteresis of conductance displayed by these BIPY-MCl2 junctions changes in magnitude depending on the identity of the metal ion (M) and the window of the applied voltage across the junction. The hysteretic behavior of conductance in these junctions appears only in an incoherent (Fowler–Nordheim) tunneling regime. When the complexed metal ion is Mn­(II), Fe­(II), Co­(II), or Ni­(II), both incoherent tunneling and hysteresis are observed for a voltage range between +1.0 V and −1.0 V. When the metal ion is Cr­(II) or Cu­(II), however, only resonant (one-step) tunneling is observed, and the junctions exhibit no hysteresis and do not enter the incoherent tunneling regime. Using this correlation, the conductance characteristics of BIPY-MCl2 junctions can be controlled. This voltage-induced change of conductance demonstrates a simple, fast, and reversible way (i.e., by changing the applied voltage) to modulate conductance in molecular tunneling junctions.
doi_str_mv 10.1021/acsnano.1c10155
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1859096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2634851349</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3165-af8d98f04a08e0199443bb6fa6906bec68b3498439312045b8ce6d6615fab5963</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EolCY2VDEhITS2nHs2iOqCgUVsRSJzXIcB1KldvHH0H-PIaEb0510z713egC4QnCCYIGmUnkjjZ0ghSAi5AicIY5pDhl9Pz70BI3AufcbCMmMzegpGGFSYJgGZ2AxtyY423W6zpZ7H7TTvvWZbbI0qKMK0iidtSZ7sZ1WsZMuW0djdNeaj-w5GhVaa_wFOGlk5_XlUMfg7WGxni_z1evj0_x-lUuMKMllw2rOGlhKyDREnJclriraSMohrbSirMIlZyXmGBWwJBVTmtaUItLIinCKx-Cmz7U-tMKrNmj1qWz6RwWBGOHwF7rtoZ2zX1H7ILatV7rrpNE2elFQXCYn6VJCpz2qnPXe6UbsXLuVbi8QFD-CxSBYDILTxvUQHqutrg_8n9EE3PVA2hQbG51JQv6N-wbemoVi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634851349</pqid></control><display><type>article</type><title>Controlled Hysteresis of Conductance in Molecular Tunneling Junctions</title><source>ACS Publications</source><creator>Park, Junwoo ; Kodaimati, Mohamad S ; Belding, Lee ; Root, Samuel E ; Schatz, George C ; Whitesides, George M</creator><creatorcontrib>Park, Junwoo ; Kodaimati, Mohamad S ; Belding, Lee ; Root, Samuel E ; Schatz, George C ; Whitesides, George M</creatorcontrib><description>The problem this paper addresses is the origin of the hysteretic behavior in two-terminal molecular junctions made from an EGaIn electrode and self-assembled monolayers of alkanethiolates terminated in chelates (transition metal dichlorides complexed with 2,2′-bipyridine; BIPY-MCl2). The hysteresis of conductance displayed by these BIPY-MCl2 junctions changes in magnitude depending on the identity of the metal ion (M) and the window of the applied voltage across the junction. The hysteretic behavior of conductance in these junctions appears only in an incoherent (Fowler–Nordheim) tunneling regime. When the complexed metal ion is Mn­(II), Fe­(II), Co­(II), or Ni­(II), both incoherent tunneling and hysteresis are observed for a voltage range between +1.0 V and −1.0 V. When the metal ion is Cr­(II) or Cu­(II), however, only resonant (one-step) tunneling is observed, and the junctions exhibit no hysteresis and do not enter the incoherent tunneling regime. Using this correlation, the conductance characteristics of BIPY-MCl2 junctions can be controlled. This voltage-induced change of conductance demonstrates a simple, fast, and reversible way (i.e., by changing the applied voltage) to modulate conductance in molecular tunneling junctions.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.1c10155</identifier><identifier>PMID: 35230085</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2022-03, Vol.16 (3), p.4206-4216</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3165-af8d98f04a08e0199443bb6fa6906bec68b3498439312045b8ce6d6615fab5963</citedby><cites>FETCH-LOGICAL-a3165-af8d98f04a08e0199443bb6fa6906bec68b3498439312045b8ce6d6615fab5963</cites><orcidid>0000-0001-9451-2442 ; 0000-0001-5837-4740 ; 0000000158374740 ; 0000000194512442</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.1c10155$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.1c10155$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35230085$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1859096$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Junwoo</creatorcontrib><creatorcontrib>Kodaimati, Mohamad S</creatorcontrib><creatorcontrib>Belding, Lee</creatorcontrib><creatorcontrib>Root, Samuel E</creatorcontrib><creatorcontrib>Schatz, George C</creatorcontrib><creatorcontrib>Whitesides, George M</creatorcontrib><title>Controlled Hysteresis of Conductance in Molecular Tunneling Junctions</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The problem this paper addresses is the origin of the hysteretic behavior in two-terminal molecular junctions made from an EGaIn electrode and self-assembled monolayers of alkanethiolates terminated in chelates (transition metal dichlorides complexed with 2,2′-bipyridine; BIPY-MCl2). The hysteresis of conductance displayed by these BIPY-MCl2 junctions changes in magnitude depending on the identity of the metal ion (M) and the window of the applied voltage across the junction. The hysteretic behavior of conductance in these junctions appears only in an incoherent (Fowler–Nordheim) tunneling regime. When the complexed metal ion is Mn­(II), Fe­(II), Co­(II), or Ni­(II), both incoherent tunneling and hysteresis are observed for a voltage range between +1.0 V and −1.0 V. When the metal ion is Cr­(II) or Cu­(II), however, only resonant (one-step) tunneling is observed, and the junctions exhibit no hysteresis and do not enter the incoherent tunneling regime. Using this correlation, the conductance characteristics of BIPY-MCl2 junctions can be controlled. This voltage-induced change of conductance demonstrates a simple, fast, and reversible way (i.e., by changing the applied voltage) to modulate conductance in molecular tunneling junctions.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EolCY2VDEhITS2nHs2iOqCgUVsRSJzXIcB1KldvHH0H-PIaEb0510z713egC4QnCCYIGmUnkjjZ0ghSAi5AicIY5pDhl9Pz70BI3AufcbCMmMzegpGGFSYJgGZ2AxtyY423W6zpZ7H7TTvvWZbbI0qKMK0iidtSZ7sZ1WsZMuW0djdNeaj-w5GhVaa_wFOGlk5_XlUMfg7WGxni_z1evj0_x-lUuMKMllw2rOGlhKyDREnJclriraSMohrbSirMIlZyXmGBWwJBVTmtaUItLIinCKx-Cmz7U-tMKrNmj1qWz6RwWBGOHwF7rtoZ2zX1H7ILatV7rrpNE2elFQXCYn6VJCpz2qnPXe6UbsXLuVbi8QFD-CxSBYDILTxvUQHqutrg_8n9EE3PVA2hQbG51JQv6N-wbemoVi</recordid><startdate>20220322</startdate><enddate>20220322</enddate><creator>Park, Junwoo</creator><creator>Kodaimati, Mohamad S</creator><creator>Belding, Lee</creator><creator>Root, Samuel E</creator><creator>Schatz, George C</creator><creator>Whitesides, George M</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9451-2442</orcidid><orcidid>https://orcid.org/0000-0001-5837-4740</orcidid><orcidid>https://orcid.org/0000000158374740</orcidid><orcidid>https://orcid.org/0000000194512442</orcidid></search><sort><creationdate>20220322</creationdate><title>Controlled Hysteresis of Conductance in Molecular Tunneling Junctions</title><author>Park, Junwoo ; Kodaimati, Mohamad S ; Belding, Lee ; Root, Samuel E ; Schatz, George C ; Whitesides, George M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3165-af8d98f04a08e0199443bb6fa6906bec68b3498439312045b8ce6d6615fab5963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Junwoo</creatorcontrib><creatorcontrib>Kodaimati, Mohamad S</creatorcontrib><creatorcontrib>Belding, Lee</creatorcontrib><creatorcontrib>Root, Samuel E</creatorcontrib><creatorcontrib>Schatz, George C</creatorcontrib><creatorcontrib>Whitesides, George M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Junwoo</au><au>Kodaimati, Mohamad S</au><au>Belding, Lee</au><au>Root, Samuel E</au><au>Schatz, George C</au><au>Whitesides, George M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlled Hysteresis of Conductance in Molecular Tunneling Junctions</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2022-03-22</date><risdate>2022</risdate><volume>16</volume><issue>3</issue><spage>4206</spage><epage>4216</epage><pages>4206-4216</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The problem this paper addresses is the origin of the hysteretic behavior in two-terminal molecular junctions made from an EGaIn electrode and self-assembled monolayers of alkanethiolates terminated in chelates (transition metal dichlorides complexed with 2,2′-bipyridine; BIPY-MCl2). The hysteresis of conductance displayed by these BIPY-MCl2 junctions changes in magnitude depending on the identity of the metal ion (M) and the window of the applied voltage across the junction. The hysteretic behavior of conductance in these junctions appears only in an incoherent (Fowler–Nordheim) tunneling regime. When the complexed metal ion is Mn­(II), Fe­(II), Co­(II), or Ni­(II), both incoherent tunneling and hysteresis are observed for a voltage range between +1.0 V and −1.0 V. When the metal ion is Cr­(II) or Cu­(II), however, only resonant (one-step) tunneling is observed, and the junctions exhibit no hysteresis and do not enter the incoherent tunneling regime. Using this correlation, the conductance characteristics of BIPY-MCl2 junctions can be controlled. This voltage-induced change of conductance demonstrates a simple, fast, and reversible way (i.e., by changing the applied voltage) to modulate conductance in molecular tunneling junctions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35230085</pmid><doi>10.1021/acsnano.1c10155</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9451-2442</orcidid><orcidid>https://orcid.org/0000-0001-5837-4740</orcidid><orcidid>https://orcid.org/0000000158374740</orcidid><orcidid>https://orcid.org/0000000194512442</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2022-03, Vol.16 (3), p.4206-4216
issn 1936-0851
1936-086X
language eng
recordid cdi_osti_scitechconnect_1859096
source ACS Publications
title Controlled Hysteresis of Conductance in Molecular Tunneling Junctions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T06%3A05%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlled%20Hysteresis%20of%20Conductance%20in%20Molecular%20Tunneling%20Junctions&rft.jtitle=ACS%20nano&rft.au=Park,%20Junwoo&rft.date=2022-03-22&rft.volume=16&rft.issue=3&rft.spage=4206&rft.epage=4216&rft.pages=4206-4216&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.1c10155&rft_dat=%3Cproquest_osti_%3E2634851349%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2634851349&rft_id=info:pmid/35230085&rfr_iscdi=true