Persistent Influence of Wildfire Emissions in the Western United States and Characteristics of Aged Biomass Burning Organic Aerosols under Clean Air Conditions
Wildfire-influenced air masses under regional background conditions were characterized at the Mt. Bachelor Observatory (∼2800 m a.s.l.) in summer 2019 to provide a better understanding of the aging of biomass burning organic aerosols (BBOAs) and their impacts on the remote troposphere in the western...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2022-03, Vol.56 (6), p.3645-3657 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wildfire-influenced air masses under regional background conditions were characterized at the Mt. Bachelor Observatory (∼2800 m a.s.l.) in summer 2019 to provide a better understanding of the aging of biomass burning organic aerosols (BBOAs) and their impacts on the remote troposphere in the western United States. Submicron aerosol (PM
) concentrations were low (average ± 1σ = 2.2 ± 1.9 μg sm
), but oxidized BBOAs (average O/C = 0.84) were constantly detected throughout the study. The BBOA correlated well with black carbon, furfural, and acetonitrile and comprised above 50% of PM
during plume events when the peak PM
concentration reached 18.0 μg sm
. Wildfire plumes with estimated transport times varying from ∼10 h to >10 days were identified. The plumes showed ΔOA/ΔCO values ranging from 0.038 to 0.122 ppb ppb
with a significant negative relation to plume age, indicating BBOA loss relative to CO during long-range transport. Additionally, increases of average O/C and aerosol sizes were seen in more aged plumes. The mass-based size mode was approximately 700 nm (
) in the most oxidized plume that likely originated in Siberia, suggesting aqueous-phase processing during transport. This work highlights the widespread impacts that wildfire emissions have on aerosol concentration and properties, and thus climate, in the western United States. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/acs.est.1c07301 |