Exploring Multidimensional Chemical Spaces: Instrumentation and Chemical Systems for the Parallelization of Hydrogen Evolving Photocatalytic Reactions

Photocatalytic hydrogen (H2) evolution, particularly though water reduction, presents an enticing alternative to current fossil fuel intensive methods of hydrogen production. While this field has been active for decades and advances have been made, it has been limited to serial experimentation due t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2021-12, Vol.35 (23), p.18957-18981
Hauptverfasser: Lopato, Eric M, Bernhard, Stefan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18981
container_issue 23
container_start_page 18957
container_title Energy & fuels
container_volume 35
creator Lopato, Eric M
Bernhard, Stefan
description Photocatalytic hydrogen (H2) evolution, particularly though water reduction, presents an enticing alternative to current fossil fuel intensive methods of hydrogen production. While this field has been active for decades and advances have been made, it has been limited to serial experimentation due to the solar-mimicking lamps used and data collection techniques. With the democratization of machine and instrument design through the ever-decreasing prices of computers and sensing equipment, paired with the availability of high-power light emitting diodes (LEDs) as viable replacement light sources, reactor design has seen significant changes in recent years. After the advent of the first LED-illuminated parallel reactors for gas evolving photocatalytic reactions, a host of research groups around the world have matched the design and used their own creative means of studying H2 evolving reactions in parallel. Here we report select cases of research utilizing parallelized reactors for light-driven H2 evolution, highlighting the benefits of parallel and high-throughput experimentation. Lastly, changes to reactor design and sensing methodology, specifically how colorimetric measurement enabled the development of a 108-well parallelized reactor, are described, and these state-of-the-art reactors are compared to alternative, nonparallelized approaches using serial, robotic automation.
doi_str_mv 10.1021/acs.energyfuels.1c02168
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1858112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b862449857</sourcerecordid><originalsourceid>FETCH-LOGICAL-a328t-a41616799f4104fd09777a660c7f1e552d53979d2f5db153f9647a763c2d1b43</originalsourceid><addsrcrecordid>eNqFkcFKAzEQhoMoWKvPYPC-Nclukl1vUqotVCza-5JmkzYlTUqSiuuD-Lzu0h568zTD8P0zMB8A9xiNMCL4Ucg4Uk6FdasPysYRlt2UlRdggClBGUWkugQDVJY8Q4wU1-Amxi1CiOUlHYDfyffe-mDcGr4dbDKN2SkXjXfCwvFG7Yzsms-9kCo-wZmLKRw6IInUIVC45gxqY1K7CLUPMG0UXIggrFXW_Bxhr-G0bYJfKwcnX95-9TcXG5-8FEnYNhkJP5SQPRxvwZUWNqq7Ux2C5ctkOZ5m8_fX2fh5nomclCkTBWaY8arSBUaFblDFOReMIck1VpSShuYVrxqiabPCNNcVK7jgLJekwasiH4KH41ofk6mjNEnJjfTOKZlqXNISY9JB_AjJ4GMMStf7YHYitDVGda-g7hTUZwrqk4IumR-TPbD1h9B9Nf6b-gMnx5Rr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Exploring Multidimensional Chemical Spaces: Instrumentation and Chemical Systems for the Parallelization of Hydrogen Evolving Photocatalytic Reactions</title><source>American Chemical Society Journals</source><creator>Lopato, Eric M ; Bernhard, Stefan</creator><creatorcontrib>Lopato, Eric M ; Bernhard, Stefan</creatorcontrib><description>Photocatalytic hydrogen (H2) evolution, particularly though water reduction, presents an enticing alternative to current fossil fuel intensive methods of hydrogen production. While this field has been active for decades and advances have been made, it has been limited to serial experimentation due to the solar-mimicking lamps used and data collection techniques. With the democratization of machine and instrument design through the ever-decreasing prices of computers and sensing equipment, paired with the availability of high-power light emitting diodes (LEDs) as viable replacement light sources, reactor design has seen significant changes in recent years. After the advent of the first LED-illuminated parallel reactors for gas evolving photocatalytic reactions, a host of research groups around the world have matched the design and used their own creative means of studying H2 evolving reactions in parallel. Here we report select cases of research utilizing parallelized reactors for light-driven H2 evolution, highlighting the benefits of parallel and high-throughput experimentation. Lastly, changes to reactor design and sensing methodology, specifically how colorimetric measurement enabled the development of a 108-well parallelized reactor, are described, and these state-of-the-art reactors are compared to alternative, nonparallelized approaches using serial, robotic automation.</description><identifier>ISSN: 0887-0624</identifier><identifier>EISSN: 1520-5029</identifier><identifier>DOI: 10.1021/acs.energyfuels.1c02168</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Energy &amp; fuels, 2021-12, Vol.35 (23), p.18957-18981</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a328t-a41616799f4104fd09777a660c7f1e552d53979d2f5db153f9647a763c2d1b43</citedby><cites>FETCH-LOGICAL-a328t-a41616799f4104fd09777a660c7f1e552d53979d2f5db153f9647a763c2d1b43</cites><orcidid>0000-0002-8160-7730 ; 0000-0002-8033-1453 ; 0000000281607730 ; 0000000280331453</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.energyfuels.1c02168$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.energyfuels.1c02168$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1858112$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lopato, Eric M</creatorcontrib><creatorcontrib>Bernhard, Stefan</creatorcontrib><title>Exploring Multidimensional Chemical Spaces: Instrumentation and Chemical Systems for the Parallelization of Hydrogen Evolving Photocatalytic Reactions</title><title>Energy &amp; fuels</title><addtitle>Energy Fuels</addtitle><description>Photocatalytic hydrogen (H2) evolution, particularly though water reduction, presents an enticing alternative to current fossil fuel intensive methods of hydrogen production. While this field has been active for decades and advances have been made, it has been limited to serial experimentation due to the solar-mimicking lamps used and data collection techniques. With the democratization of machine and instrument design through the ever-decreasing prices of computers and sensing equipment, paired with the availability of high-power light emitting diodes (LEDs) as viable replacement light sources, reactor design has seen significant changes in recent years. After the advent of the first LED-illuminated parallel reactors for gas evolving photocatalytic reactions, a host of research groups around the world have matched the design and used their own creative means of studying H2 evolving reactions in parallel. Here we report select cases of research utilizing parallelized reactors for light-driven H2 evolution, highlighting the benefits of parallel and high-throughput experimentation. Lastly, changes to reactor design and sensing methodology, specifically how colorimetric measurement enabled the development of a 108-well parallelized reactor, are described, and these state-of-the-art reactors are compared to alternative, nonparallelized approaches using serial, robotic automation.</description><issn>0887-0624</issn><issn>1520-5029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkcFKAzEQhoMoWKvPYPC-Nclukl1vUqotVCza-5JmkzYlTUqSiuuD-Lzu0h568zTD8P0zMB8A9xiNMCL4Ucg4Uk6FdasPysYRlt2UlRdggClBGUWkugQDVJY8Q4wU1-Amxi1CiOUlHYDfyffe-mDcGr4dbDKN2SkXjXfCwvFG7Yzsms-9kCo-wZmLKRw6IInUIVC45gxqY1K7CLUPMG0UXIggrFXW_Bxhr-G0bYJfKwcnX95-9TcXG5-8FEnYNhkJP5SQPRxvwZUWNqq7Ux2C5ctkOZ5m8_fX2fh5nomclCkTBWaY8arSBUaFblDFOReMIck1VpSShuYVrxqiabPCNNcVK7jgLJekwasiH4KH41ofk6mjNEnJjfTOKZlqXNISY9JB_AjJ4GMMStf7YHYitDVGda-g7hTUZwrqk4IumR-TPbD1h9B9Nf6b-gMnx5Rr</recordid><startdate>20211202</startdate><enddate>20211202</enddate><creator>Lopato, Eric M</creator><creator>Bernhard, Stefan</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8160-7730</orcidid><orcidid>https://orcid.org/0000-0002-8033-1453</orcidid><orcidid>https://orcid.org/0000000281607730</orcidid><orcidid>https://orcid.org/0000000280331453</orcidid></search><sort><creationdate>20211202</creationdate><title>Exploring Multidimensional Chemical Spaces: Instrumentation and Chemical Systems for the Parallelization of Hydrogen Evolving Photocatalytic Reactions</title><author>Lopato, Eric M ; Bernhard, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a328t-a41616799f4104fd09777a660c7f1e552d53979d2f5db153f9647a763c2d1b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopato, Eric M</creatorcontrib><creatorcontrib>Bernhard, Stefan</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Energy &amp; fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopato, Eric M</au><au>Bernhard, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring Multidimensional Chemical Spaces: Instrumentation and Chemical Systems for the Parallelization of Hydrogen Evolving Photocatalytic Reactions</atitle><jtitle>Energy &amp; fuels</jtitle><addtitle>Energy Fuels</addtitle><date>2021-12-02</date><risdate>2021</risdate><volume>35</volume><issue>23</issue><spage>18957</spage><epage>18981</epage><pages>18957-18981</pages><issn>0887-0624</issn><eissn>1520-5029</eissn><abstract>Photocatalytic hydrogen (H2) evolution, particularly though water reduction, presents an enticing alternative to current fossil fuel intensive methods of hydrogen production. While this field has been active for decades and advances have been made, it has been limited to serial experimentation due to the solar-mimicking lamps used and data collection techniques. With the democratization of machine and instrument design through the ever-decreasing prices of computers and sensing equipment, paired with the availability of high-power light emitting diodes (LEDs) as viable replacement light sources, reactor design has seen significant changes in recent years. After the advent of the first LED-illuminated parallel reactors for gas evolving photocatalytic reactions, a host of research groups around the world have matched the design and used their own creative means of studying H2 evolving reactions in parallel. Here we report select cases of research utilizing parallelized reactors for light-driven H2 evolution, highlighting the benefits of parallel and high-throughput experimentation. Lastly, changes to reactor design and sensing methodology, specifically how colorimetric measurement enabled the development of a 108-well parallelized reactor, are described, and these state-of-the-art reactors are compared to alternative, nonparallelized approaches using serial, robotic automation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.energyfuels.1c02168</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-8160-7730</orcidid><orcidid>https://orcid.org/0000-0002-8033-1453</orcidid><orcidid>https://orcid.org/0000000281607730</orcidid><orcidid>https://orcid.org/0000000280331453</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0887-0624
ispartof Energy & fuels, 2021-12, Vol.35 (23), p.18957-18981
issn 0887-0624
1520-5029
language eng
recordid cdi_osti_scitechconnect_1858112
source American Chemical Society Journals
title Exploring Multidimensional Chemical Spaces: Instrumentation and Chemical Systems for the Parallelization of Hydrogen Evolving Photocatalytic Reactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A11%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20Multidimensional%20Chemical%20Spaces:%20Instrumentation%20and%20Chemical%20Systems%20for%20the%20Parallelization%20of%20Hydrogen%20Evolving%20Photocatalytic%20Reactions&rft.jtitle=Energy%20&%20fuels&rft.au=Lopato,%20Eric%20M&rft.date=2021-12-02&rft.volume=35&rft.issue=23&rft.spage=18957&rft.epage=18981&rft.pages=18957-18981&rft.issn=0887-0624&rft.eissn=1520-5029&rft_id=info:doi/10.1021/acs.energyfuels.1c02168&rft_dat=%3Cacs_osti_%3Eb862449857%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true