Morphology Control of Tantalum Carbide Nanoparticles through Dopant Additions
The control of powder morphology in metals and ceramics is of critical importance in applications such as catalysis and chemical sensing whereby specific crystal facets better facilitate chemical reactions. In response to this challenge, we present a combined experimental and computational approach...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2021-05, Vol.125 (19), p.10665-10675 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10675 |
---|---|
container_issue | 19 |
container_start_page | 10665 |
container_title | Journal of physical chemistry. C |
container_volume | 125 |
creator | Ren, Tianqi Tran, Richard Lee, Sebastian Bandera, Aric Herrera, Manuel Li, Xiang-Guo Ong, Shyue Ping Graeve, Olivia A |
description | The control of powder morphology in metals and ceramics is of critical importance in applications such as catalysis and chemical sensing whereby specific crystal facets better facilitate chemical reactions. In response to this challenge, we present a combined experimental and computational approach that examines the principles behind dopant-induced crystallographic faceting in nanoparticles. We base our study on nanoparticles of tantalum carbide doped with nickel, iron, cobalt, niobium, and titanium and observe a very significant transition from round/irregular particle shapes to cubes and cuboctahedrons upon the addition of transition metal dopants. The presence of the dopants, which segregate toward the surface of the particles, results in atomic orbital hybridization, causing a significant decrease of up to 0.13 eV·Å–2 in the surface energy of the (100) facets, thus providing the driving force for the formation of nanocubes with exposed (100) surfaces. These principles can be generalized to other ceramics and serve as guidance for the optimized control of shape in powders. For example, if one seeks to produce highly faceted V-, Hf-, or Zr-carbide nanoparticles, doping strategies reported here can be applied. Other elements may also be effective in changing the growth habits of crystals based on surface segregation and dopant–host atomic orbital hybridization. |
doi_str_mv | 10.1021/acs.jpcc.1c01387 |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1858096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>g2773949</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-545c91e60793aee4cd21468f2278e9216b5448c88cf9e30b513f7df0063a85493</originalsourceid><addsrcrecordid>eNp1kD1vwyAQhlHVSk3T7h1R5zoFAwbGyP2UknZJZ0QwxI4csIAM-fd1mqhbpzvdPe9J9wBwj9EMoxI_aZNm28GYGTYIE8EvwARLUhacMnb511N-DW5S2iLEyIhNwHIZ4tCGPmwOsA4-x9DD4OBK-6z7_Q7WOq67xsJP7cOgY-5MbxPMbQz7TQufx5nPcN40Xe6CT7fgyuk-2btznYLv15dV_V4svt4-6vmi0ATxXDDKjMS2QlwSbS01TYlpJVxZcmFlias1o1QYIYyTlqA1w8TxxiFUES0YlWQKHk53Q8qdSqbL1rQmeG9NVlgwgWQ1QugEmRhSitapIXY7HQ8KI3V0pkZn6uhMnZ2NkcdT5HcT9tGPX_yP_wC64W-e</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Morphology Control of Tantalum Carbide Nanoparticles through Dopant Additions</title><source>ACS Publications</source><creator>Ren, Tianqi ; Tran, Richard ; Lee, Sebastian ; Bandera, Aric ; Herrera, Manuel ; Li, Xiang-Guo ; Ong, Shyue Ping ; Graeve, Olivia A</creator><creatorcontrib>Ren, Tianqi ; Tran, Richard ; Lee, Sebastian ; Bandera, Aric ; Herrera, Manuel ; Li, Xiang-Guo ; Ong, Shyue Ping ; Graeve, Olivia A</creatorcontrib><description>The control of powder morphology in metals and ceramics is of critical importance in applications such as catalysis and chemical sensing whereby specific crystal facets better facilitate chemical reactions. In response to this challenge, we present a combined experimental and computational approach that examines the principles behind dopant-induced crystallographic faceting in nanoparticles. We base our study on nanoparticles of tantalum carbide doped with nickel, iron, cobalt, niobium, and titanium and observe a very significant transition from round/irregular particle shapes to cubes and cuboctahedrons upon the addition of transition metal dopants. The presence of the dopants, which segregate toward the surface of the particles, results in atomic orbital hybridization, causing a significant decrease of up to 0.13 eV·Å–2 in the surface energy of the (100) facets, thus providing the driving force for the formation of nanocubes with exposed (100) surfaces. These principles can be generalized to other ceramics and serve as guidance for the optimized control of shape in powders. For example, if one seeks to produce highly faceted V-, Hf-, or Zr-carbide nanoparticles, doping strategies reported here can be applied. Other elements may also be effective in changing the growth habits of crystals based on surface segregation and dopant–host atomic orbital hybridization.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.1c01387</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>C: Physical Properties of Materials and Interfaces</subject><ispartof>Journal of physical chemistry. C, 2021-05, Vol.125 (19), p.10665-10675</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a307t-545c91e60793aee4cd21468f2278e9216b5448c88cf9e30b513f7df0063a85493</citedby><cites>FETCH-LOGICAL-a307t-545c91e60793aee4cd21468f2278e9216b5448c88cf9e30b513f7df0063a85493</cites><orcidid>0000-0003-3599-0502 ; 0000-0001-5726-2587 ; 0000000157262587 ; 0000000335990502</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.1c01387$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.1c01387$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1858096$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ren, Tianqi</creatorcontrib><creatorcontrib>Tran, Richard</creatorcontrib><creatorcontrib>Lee, Sebastian</creatorcontrib><creatorcontrib>Bandera, Aric</creatorcontrib><creatorcontrib>Herrera, Manuel</creatorcontrib><creatorcontrib>Li, Xiang-Guo</creatorcontrib><creatorcontrib>Ong, Shyue Ping</creatorcontrib><creatorcontrib>Graeve, Olivia A</creatorcontrib><title>Morphology Control of Tantalum Carbide Nanoparticles through Dopant Additions</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The control of powder morphology in metals and ceramics is of critical importance in applications such as catalysis and chemical sensing whereby specific crystal facets better facilitate chemical reactions. In response to this challenge, we present a combined experimental and computational approach that examines the principles behind dopant-induced crystallographic faceting in nanoparticles. We base our study on nanoparticles of tantalum carbide doped with nickel, iron, cobalt, niobium, and titanium and observe a very significant transition from round/irregular particle shapes to cubes and cuboctahedrons upon the addition of transition metal dopants. The presence of the dopants, which segregate toward the surface of the particles, results in atomic orbital hybridization, causing a significant decrease of up to 0.13 eV·Å–2 in the surface energy of the (100) facets, thus providing the driving force for the formation of nanocubes with exposed (100) surfaces. These principles can be generalized to other ceramics and serve as guidance for the optimized control of shape in powders. For example, if one seeks to produce highly faceted V-, Hf-, or Zr-carbide nanoparticles, doping strategies reported here can be applied. Other elements may also be effective in changing the growth habits of crystals based on surface segregation and dopant–host atomic orbital hybridization.</description><subject>C: Physical Properties of Materials and Interfaces</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kD1vwyAQhlHVSk3T7h1R5zoFAwbGyP2UknZJZ0QwxI4csIAM-fd1mqhbpzvdPe9J9wBwj9EMoxI_aZNm28GYGTYIE8EvwARLUhacMnb511N-DW5S2iLEyIhNwHIZ4tCGPmwOsA4-x9DD4OBK-6z7_Q7WOq67xsJP7cOgY-5MbxPMbQz7TQufx5nPcN40Xe6CT7fgyuk-2btznYLv15dV_V4svt4-6vmi0ATxXDDKjMS2QlwSbS01TYlpJVxZcmFlias1o1QYIYyTlqA1w8TxxiFUES0YlWQKHk53Q8qdSqbL1rQmeG9NVlgwgWQ1QugEmRhSitapIXY7HQ8KI3V0pkZn6uhMnZ2NkcdT5HcT9tGPX_yP_wC64W-e</recordid><startdate>20210520</startdate><enddate>20210520</enddate><creator>Ren, Tianqi</creator><creator>Tran, Richard</creator><creator>Lee, Sebastian</creator><creator>Bandera, Aric</creator><creator>Herrera, Manuel</creator><creator>Li, Xiang-Guo</creator><creator>Ong, Shyue Ping</creator><creator>Graeve, Olivia A</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3599-0502</orcidid><orcidid>https://orcid.org/0000-0001-5726-2587</orcidid><orcidid>https://orcid.org/0000000157262587</orcidid><orcidid>https://orcid.org/0000000335990502</orcidid></search><sort><creationdate>20210520</creationdate><title>Morphology Control of Tantalum Carbide Nanoparticles through Dopant Additions</title><author>Ren, Tianqi ; Tran, Richard ; Lee, Sebastian ; Bandera, Aric ; Herrera, Manuel ; Li, Xiang-Guo ; Ong, Shyue Ping ; Graeve, Olivia A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-545c91e60793aee4cd21468f2278e9216b5448c88cf9e30b513f7df0063a85493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>C: Physical Properties of Materials and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Tianqi</creatorcontrib><creatorcontrib>Tran, Richard</creatorcontrib><creatorcontrib>Lee, Sebastian</creatorcontrib><creatorcontrib>Bandera, Aric</creatorcontrib><creatorcontrib>Herrera, Manuel</creatorcontrib><creatorcontrib>Li, Xiang-Guo</creatorcontrib><creatorcontrib>Ong, Shyue Ping</creatorcontrib><creatorcontrib>Graeve, Olivia A</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Tianqi</au><au>Tran, Richard</au><au>Lee, Sebastian</au><au>Bandera, Aric</au><au>Herrera, Manuel</au><au>Li, Xiang-Guo</au><au>Ong, Shyue Ping</au><au>Graeve, Olivia A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphology Control of Tantalum Carbide Nanoparticles through Dopant Additions</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2021-05-20</date><risdate>2021</risdate><volume>125</volume><issue>19</issue><spage>10665</spage><epage>10675</epage><pages>10665-10675</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The control of powder morphology in metals and ceramics is of critical importance in applications such as catalysis and chemical sensing whereby specific crystal facets better facilitate chemical reactions. In response to this challenge, we present a combined experimental and computational approach that examines the principles behind dopant-induced crystallographic faceting in nanoparticles. We base our study on nanoparticles of tantalum carbide doped with nickel, iron, cobalt, niobium, and titanium and observe a very significant transition from round/irregular particle shapes to cubes and cuboctahedrons upon the addition of transition metal dopants. The presence of the dopants, which segregate toward the surface of the particles, results in atomic orbital hybridization, causing a significant decrease of up to 0.13 eV·Å–2 in the surface energy of the (100) facets, thus providing the driving force for the formation of nanocubes with exposed (100) surfaces. These principles can be generalized to other ceramics and serve as guidance for the optimized control of shape in powders. For example, if one seeks to produce highly faceted V-, Hf-, or Zr-carbide nanoparticles, doping strategies reported here can be applied. Other elements may also be effective in changing the growth habits of crystals based on surface segregation and dopant–host atomic orbital hybridization.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.1c01387</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3599-0502</orcidid><orcidid>https://orcid.org/0000-0001-5726-2587</orcidid><orcidid>https://orcid.org/0000000157262587</orcidid><orcidid>https://orcid.org/0000000335990502</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2021-05, Vol.125 (19), p.10665-10675 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_osti_scitechconnect_1858096 |
source | ACS Publications |
subjects | C: Physical Properties of Materials and Interfaces |
title | Morphology Control of Tantalum Carbide Nanoparticles through Dopant Additions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A14%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphology%20Control%20of%20Tantalum%20Carbide%20Nanoparticles%20through%20Dopant%20Additions&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Ren,%20Tianqi&rft.date=2021-05-20&rft.volume=125&rft.issue=19&rft.spage=10665&rft.epage=10675&rft.pages=10665-10675&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.1c01387&rft_dat=%3Cacs_osti_%3Eg2773949%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |