Morphology Control of Tantalum Carbide Nanoparticles through Dopant Additions

The control of powder morphology in metals and ceramics is of critical importance in applications such as catalysis and chemical sensing whereby specific crystal facets better facilitate chemical reactions. In response to this challenge, we present a combined experimental and computational approach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2021-05, Vol.125 (19), p.10665-10675
Hauptverfasser: Ren, Tianqi, Tran, Richard, Lee, Sebastian, Bandera, Aric, Herrera, Manuel, Li, Xiang-Guo, Ong, Shyue Ping, Graeve, Olivia A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10675
container_issue 19
container_start_page 10665
container_title Journal of physical chemistry. C
container_volume 125
creator Ren, Tianqi
Tran, Richard
Lee, Sebastian
Bandera, Aric
Herrera, Manuel
Li, Xiang-Guo
Ong, Shyue Ping
Graeve, Olivia A
description The control of powder morphology in metals and ceramics is of critical importance in applications such as catalysis and chemical sensing whereby specific crystal facets better facilitate chemical reactions. In response to this challenge, we present a combined experimental and computational approach that examines the principles behind dopant-induced crystallographic faceting in nanoparticles. We base our study on nanoparticles of tantalum carbide doped with nickel, iron, cobalt, niobium, and titanium and observe a very significant transition from round/irregular particle shapes to cubes and cuboctahedrons upon the addition of transition metal dopants. The presence of the dopants, which segregate toward the surface of the particles, results in atomic orbital hybridization, causing a significant decrease of up to 0.13 eV·Å–2 in the surface energy of the (100) facets, thus providing the driving force for the formation of nanocubes with exposed (100) surfaces. These principles can be generalized to other ceramics and serve as guidance for the optimized control of shape in powders. For example, if one seeks to produce highly faceted V-, Hf-, or Zr-carbide nanoparticles, doping strategies reported here can be applied. Other elements may also be effective in changing the growth habits of crystals based on surface segregation and dopant–host atomic orbital hybridization.
doi_str_mv 10.1021/acs.jpcc.1c01387
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1858096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>g2773949</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-545c91e60793aee4cd21468f2278e9216b5448c88cf9e30b513f7df0063a85493</originalsourceid><addsrcrecordid>eNp1kD1vwyAQhlHVSk3T7h1R5zoFAwbGyP2UknZJZ0QwxI4csIAM-fd1mqhbpzvdPe9J9wBwj9EMoxI_aZNm28GYGTYIE8EvwARLUhacMnb511N-DW5S2iLEyIhNwHIZ4tCGPmwOsA4-x9DD4OBK-6z7_Q7WOq67xsJP7cOgY-5MbxPMbQz7TQufx5nPcN40Xe6CT7fgyuk-2btznYLv15dV_V4svt4-6vmi0ATxXDDKjMS2QlwSbS01TYlpJVxZcmFlias1o1QYIYyTlqA1w8TxxiFUES0YlWQKHk53Q8qdSqbL1rQmeG9NVlgwgWQ1QugEmRhSitapIXY7HQ8KI3V0pkZn6uhMnZ2NkcdT5HcT9tGPX_yP_wC64W-e</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Morphology Control of Tantalum Carbide Nanoparticles through Dopant Additions</title><source>ACS Publications</source><creator>Ren, Tianqi ; Tran, Richard ; Lee, Sebastian ; Bandera, Aric ; Herrera, Manuel ; Li, Xiang-Guo ; Ong, Shyue Ping ; Graeve, Olivia A</creator><creatorcontrib>Ren, Tianqi ; Tran, Richard ; Lee, Sebastian ; Bandera, Aric ; Herrera, Manuel ; Li, Xiang-Guo ; Ong, Shyue Ping ; Graeve, Olivia A</creatorcontrib><description>The control of powder morphology in metals and ceramics is of critical importance in applications such as catalysis and chemical sensing whereby specific crystal facets better facilitate chemical reactions. In response to this challenge, we present a combined experimental and computational approach that examines the principles behind dopant-induced crystallographic faceting in nanoparticles. We base our study on nanoparticles of tantalum carbide doped with nickel, iron, cobalt, niobium, and titanium and observe a very significant transition from round/irregular particle shapes to cubes and cuboctahedrons upon the addition of transition metal dopants. The presence of the dopants, which segregate toward the surface of the particles, results in atomic orbital hybridization, causing a significant decrease of up to 0.13 eV·Å–2 in the surface energy of the (100) facets, thus providing the driving force for the formation of nanocubes with exposed (100) surfaces. These principles can be generalized to other ceramics and serve as guidance for the optimized control of shape in powders. For example, if one seeks to produce highly faceted V-, Hf-, or Zr-carbide nanoparticles, doping strategies reported here can be applied. Other elements may also be effective in changing the growth habits of crystals based on surface segregation and dopant–host atomic orbital hybridization.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.1c01387</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>C: Physical Properties of Materials and Interfaces</subject><ispartof>Journal of physical chemistry. C, 2021-05, Vol.125 (19), p.10665-10675</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a307t-545c91e60793aee4cd21468f2278e9216b5448c88cf9e30b513f7df0063a85493</citedby><cites>FETCH-LOGICAL-a307t-545c91e60793aee4cd21468f2278e9216b5448c88cf9e30b513f7df0063a85493</cites><orcidid>0000-0003-3599-0502 ; 0000-0001-5726-2587 ; 0000000157262587 ; 0000000335990502</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.1c01387$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.1c01387$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1858096$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ren, Tianqi</creatorcontrib><creatorcontrib>Tran, Richard</creatorcontrib><creatorcontrib>Lee, Sebastian</creatorcontrib><creatorcontrib>Bandera, Aric</creatorcontrib><creatorcontrib>Herrera, Manuel</creatorcontrib><creatorcontrib>Li, Xiang-Guo</creatorcontrib><creatorcontrib>Ong, Shyue Ping</creatorcontrib><creatorcontrib>Graeve, Olivia A</creatorcontrib><title>Morphology Control of Tantalum Carbide Nanoparticles through Dopant Additions</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The control of powder morphology in metals and ceramics is of critical importance in applications such as catalysis and chemical sensing whereby specific crystal facets better facilitate chemical reactions. In response to this challenge, we present a combined experimental and computational approach that examines the principles behind dopant-induced crystallographic faceting in nanoparticles. We base our study on nanoparticles of tantalum carbide doped with nickel, iron, cobalt, niobium, and titanium and observe a very significant transition from round/irregular particle shapes to cubes and cuboctahedrons upon the addition of transition metal dopants. The presence of the dopants, which segregate toward the surface of the particles, results in atomic orbital hybridization, causing a significant decrease of up to 0.13 eV·Å–2 in the surface energy of the (100) facets, thus providing the driving force for the formation of nanocubes with exposed (100) surfaces. These principles can be generalized to other ceramics and serve as guidance for the optimized control of shape in powders. For example, if one seeks to produce highly faceted V-, Hf-, or Zr-carbide nanoparticles, doping strategies reported here can be applied. Other elements may also be effective in changing the growth habits of crystals based on surface segregation and dopant–host atomic orbital hybridization.</description><subject>C: Physical Properties of Materials and Interfaces</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kD1vwyAQhlHVSk3T7h1R5zoFAwbGyP2UknZJZ0QwxI4csIAM-fd1mqhbpzvdPe9J9wBwj9EMoxI_aZNm28GYGTYIE8EvwARLUhacMnb511N-DW5S2iLEyIhNwHIZ4tCGPmwOsA4-x9DD4OBK-6z7_Q7WOq67xsJP7cOgY-5MbxPMbQz7TQufx5nPcN40Xe6CT7fgyuk-2btznYLv15dV_V4svt4-6vmi0ATxXDDKjMS2QlwSbS01TYlpJVxZcmFlias1o1QYIYyTlqA1w8TxxiFUES0YlWQKHk53Q8qdSqbL1rQmeG9NVlgwgWQ1QugEmRhSitapIXY7HQ8KI3V0pkZn6uhMnZ2NkcdT5HcT9tGPX_yP_wC64W-e</recordid><startdate>20210520</startdate><enddate>20210520</enddate><creator>Ren, Tianqi</creator><creator>Tran, Richard</creator><creator>Lee, Sebastian</creator><creator>Bandera, Aric</creator><creator>Herrera, Manuel</creator><creator>Li, Xiang-Guo</creator><creator>Ong, Shyue Ping</creator><creator>Graeve, Olivia A</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3599-0502</orcidid><orcidid>https://orcid.org/0000-0001-5726-2587</orcidid><orcidid>https://orcid.org/0000000157262587</orcidid><orcidid>https://orcid.org/0000000335990502</orcidid></search><sort><creationdate>20210520</creationdate><title>Morphology Control of Tantalum Carbide Nanoparticles through Dopant Additions</title><author>Ren, Tianqi ; Tran, Richard ; Lee, Sebastian ; Bandera, Aric ; Herrera, Manuel ; Li, Xiang-Guo ; Ong, Shyue Ping ; Graeve, Olivia A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-545c91e60793aee4cd21468f2278e9216b5448c88cf9e30b513f7df0063a85493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>C: Physical Properties of Materials and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Tianqi</creatorcontrib><creatorcontrib>Tran, Richard</creatorcontrib><creatorcontrib>Lee, Sebastian</creatorcontrib><creatorcontrib>Bandera, Aric</creatorcontrib><creatorcontrib>Herrera, Manuel</creatorcontrib><creatorcontrib>Li, Xiang-Guo</creatorcontrib><creatorcontrib>Ong, Shyue Ping</creatorcontrib><creatorcontrib>Graeve, Olivia A</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Tianqi</au><au>Tran, Richard</au><au>Lee, Sebastian</au><au>Bandera, Aric</au><au>Herrera, Manuel</au><au>Li, Xiang-Guo</au><au>Ong, Shyue Ping</au><au>Graeve, Olivia A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphology Control of Tantalum Carbide Nanoparticles through Dopant Additions</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2021-05-20</date><risdate>2021</risdate><volume>125</volume><issue>19</issue><spage>10665</spage><epage>10675</epage><pages>10665-10675</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The control of powder morphology in metals and ceramics is of critical importance in applications such as catalysis and chemical sensing whereby specific crystal facets better facilitate chemical reactions. In response to this challenge, we present a combined experimental and computational approach that examines the principles behind dopant-induced crystallographic faceting in nanoparticles. We base our study on nanoparticles of tantalum carbide doped with nickel, iron, cobalt, niobium, and titanium and observe a very significant transition from round/irregular particle shapes to cubes and cuboctahedrons upon the addition of transition metal dopants. The presence of the dopants, which segregate toward the surface of the particles, results in atomic orbital hybridization, causing a significant decrease of up to 0.13 eV·Å–2 in the surface energy of the (100) facets, thus providing the driving force for the formation of nanocubes with exposed (100) surfaces. These principles can be generalized to other ceramics and serve as guidance for the optimized control of shape in powders. For example, if one seeks to produce highly faceted V-, Hf-, or Zr-carbide nanoparticles, doping strategies reported here can be applied. Other elements may also be effective in changing the growth habits of crystals based on surface segregation and dopant–host atomic orbital hybridization.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.1c01387</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3599-0502</orcidid><orcidid>https://orcid.org/0000-0001-5726-2587</orcidid><orcidid>https://orcid.org/0000000157262587</orcidid><orcidid>https://orcid.org/0000000335990502</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2021-05, Vol.125 (19), p.10665-10675
issn 1932-7447
1932-7455
language eng
recordid cdi_osti_scitechconnect_1858096
source ACS Publications
subjects C: Physical Properties of Materials and Interfaces
title Morphology Control of Tantalum Carbide Nanoparticles through Dopant Additions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A14%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphology%20Control%20of%20Tantalum%20Carbide%20Nanoparticles%20through%20Dopant%20Additions&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Ren,%20Tianqi&rft.date=2021-05-20&rft.volume=125&rft.issue=19&rft.spage=10665&rft.epage=10675&rft.pages=10665-10675&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.1c01387&rft_dat=%3Cacs_osti_%3Eg2773949%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true