Structure, Function, and Thermal Adaptation of the Biotin Carboxylase Domain Dimer from Hydrogenobacter thermophilus 2‑Oxoglutarate Carboxylase

2-Oxoglutarate carboxylase (OGC), a unique member of the biotin-dependent carboxylase family from the order Aquificales, captures dissolved CO2 via the reductive tricarboxylic acid (rTCA) cycle. Structure and function studies of OGC may facilitate adaptation of the rTCA cycle to increase the level o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2021-02, Vol.60 (4), p.324-345
Hauptverfasser: Buhrman, Greg, Enríquez, Paul, Dillard, Lucas, Baer, Hayden, Truong, Vivian, Grunden, Amy M, Rose, Robert B
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 345
container_issue 4
container_start_page 324
container_title Biochemistry (Easton)
container_volume 60
creator Buhrman, Greg
Enríquez, Paul
Dillard, Lucas
Baer, Hayden
Truong, Vivian
Grunden, Amy M
Rose, Robert B
description 2-Oxoglutarate carboxylase (OGC), a unique member of the biotin-dependent carboxylase family from the order Aquificales, captures dissolved CO2 via the reductive tricarboxylic acid (rTCA) cycle. Structure and function studies of OGC may facilitate adaptation of the rTCA cycle to increase the level of carbon fixation for biofuel production. Here we compare the biotin carboxylase (BC) domain of Hydrogenobacter thermophilus OGC with the well-studied mesophilic homologues to identify features that may contribute to thermal stability and activity. We report three OGC BC X-ray structures, each bound to bicarbonate, ADP, or ADP-Mg2+, and propose that substrate binding at high temperatures is facilitated by interactions that stabilize the flexible subdomain B in a partially closed conformation. Kinetic measurements with varying ATP and biotin concentrations distinguish two temperature-dependent steps, consistent with biotin’s rate-limiting role in organizing the active site. Transition state thermodynamic values derived from the Eyring equation indicate a larger positive ΔH ⧧ and a less negative ΔS ⧧ compared to those of a previously reported mesophilic homologue. These thermodynamic values are explained by partially rate limiting product release. Phylogenetic analysis of BC domains suggests that OGC diverged prior to Aquificales evolution. The phylogenetic tree identifies mis-annotations of the Aquificales BC sequences, including the Aquifex aeolicus pyruvate carboxylase structure. Notably, our structural data reveal that the OGC BC dimer comprises a “wet” dimerization interface that is dominated by hydrophilic interactions and structural water molecules common to all BC domains and likely facilitates the conformational changes associated with the catalytic cycle. Mutations in the dimerization domain demonstrate that dimerization contributes to thermal stability.
doi_str_mv 10.1021/acs.biochem.0c00815
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1857792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2479418745</sourcerecordid><originalsourceid>FETCH-LOGICAL-a322t-32bbdaff37b0171554973f899769977a9e62970d4ce032d66ffdd404cdebf07e3</originalsourceid><addsrcrecordid>eNp9kcFu1DAURS0EokPhC5CQxYpFM7UdJ46X7ZRSpEpdUNaWYz83rpJ4sB2ps-MX-ot8CR7NgFixeLLe1bn3Sb4IvadkTQmj59qkde-DGWBaE0NIR5sXaEUbRiouZfMSrQghbcVkS07Qm5Qey8qJ4K_RSV3zlncdXaHnbzkuJi8RzvD1Mpvsw3yG9Wzx_QBx0iO-sHqb9V7HweE8AL70IfsZb3Tsw9Nu1AnwVZh0ka78BBG7GCZ8s7MxPMAcem1yEfM-LmwHPy4Js18_n--ewsO4ZB11hn-z3qJXTo8J3h3fU_T9-vP95qa6vfvydXNxW-masVzVrO-tdq4WPaGCNg2XonadlKItI7SElklBLDdAambb1jlrOeHGQu-IgPoUfTzkhpS9SsZnMIMJ8wwmK9o1QkhWoE8HaBvDjwVSVpNPBsZRzxCWpBgXktNO8Kag9QE1MaQUwalt9JOOO0WJ2hemSmHqWJg6FlZcH44Hln4C-9fzp6ECnB-AvfsxLHEun_LfyN9hqKe3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479418745</pqid></control><display><type>article</type><title>Structure, Function, and Thermal Adaptation of the Biotin Carboxylase Domain Dimer from Hydrogenobacter thermophilus 2‑Oxoglutarate Carboxylase</title><source>ACS Publications</source><creator>Buhrman, Greg ; Enríquez, Paul ; Dillard, Lucas ; Baer, Hayden ; Truong, Vivian ; Grunden, Amy M ; Rose, Robert B</creator><creatorcontrib>Buhrman, Greg ; Enríquez, Paul ; Dillard, Lucas ; Baer, Hayden ; Truong, Vivian ; Grunden, Amy M ; Rose, Robert B</creatorcontrib><description>2-Oxoglutarate carboxylase (OGC), a unique member of the biotin-dependent carboxylase family from the order Aquificales, captures dissolved CO2 via the reductive tricarboxylic acid (rTCA) cycle. Structure and function studies of OGC may facilitate adaptation of the rTCA cycle to increase the level of carbon fixation for biofuel production. Here we compare the biotin carboxylase (BC) domain of Hydrogenobacter thermophilus OGC with the well-studied mesophilic homologues to identify features that may contribute to thermal stability and activity. We report three OGC BC X-ray structures, each bound to bicarbonate, ADP, or ADP-Mg2+, and propose that substrate binding at high temperatures is facilitated by interactions that stabilize the flexible subdomain B in a partially closed conformation. Kinetic measurements with varying ATP and biotin concentrations distinguish two temperature-dependent steps, consistent with biotin’s rate-limiting role in organizing the active site. Transition state thermodynamic values derived from the Eyring equation indicate a larger positive ΔH ⧧ and a less negative ΔS ⧧ compared to those of a previously reported mesophilic homologue. These thermodynamic values are explained by partially rate limiting product release. Phylogenetic analysis of BC domains suggests that OGC diverged prior to Aquificales evolution. The phylogenetic tree identifies mis-annotations of the Aquificales BC sequences, including the Aquifex aeolicus pyruvate carboxylase structure. Notably, our structural data reveal that the OGC BC dimer comprises a “wet” dimerization interface that is dominated by hydrophilic interactions and structural water molecules common to all BC domains and likely facilitates the conformational changes associated with the catalytic cycle. Mutations in the dimerization domain demonstrate that dimerization contributes to thermal stability.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/acs.biochem.0c00815</identifier><identifier>PMID: 33464881</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Biochemistry (Easton), 2021-02, Vol.60 (4), p.324-345</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a322t-32bbdaff37b0171554973f899769977a9e62970d4ce032d66ffdd404cdebf07e3</cites><orcidid>0000-0001-9496-6671 ; 0000000194966671</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.biochem.0c00815$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.biochem.0c00815$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33464881$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1857792$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Buhrman, Greg</creatorcontrib><creatorcontrib>Enríquez, Paul</creatorcontrib><creatorcontrib>Dillard, Lucas</creatorcontrib><creatorcontrib>Baer, Hayden</creatorcontrib><creatorcontrib>Truong, Vivian</creatorcontrib><creatorcontrib>Grunden, Amy M</creatorcontrib><creatorcontrib>Rose, Robert B</creatorcontrib><title>Structure, Function, and Thermal Adaptation of the Biotin Carboxylase Domain Dimer from Hydrogenobacter thermophilus 2‑Oxoglutarate Carboxylase</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>2-Oxoglutarate carboxylase (OGC), a unique member of the biotin-dependent carboxylase family from the order Aquificales, captures dissolved CO2 via the reductive tricarboxylic acid (rTCA) cycle. Structure and function studies of OGC may facilitate adaptation of the rTCA cycle to increase the level of carbon fixation for biofuel production. Here we compare the biotin carboxylase (BC) domain of Hydrogenobacter thermophilus OGC with the well-studied mesophilic homologues to identify features that may contribute to thermal stability and activity. We report three OGC BC X-ray structures, each bound to bicarbonate, ADP, or ADP-Mg2+, and propose that substrate binding at high temperatures is facilitated by interactions that stabilize the flexible subdomain B in a partially closed conformation. Kinetic measurements with varying ATP and biotin concentrations distinguish two temperature-dependent steps, consistent with biotin’s rate-limiting role in organizing the active site. Transition state thermodynamic values derived from the Eyring equation indicate a larger positive ΔH ⧧ and a less negative ΔS ⧧ compared to those of a previously reported mesophilic homologue. These thermodynamic values are explained by partially rate limiting product release. Phylogenetic analysis of BC domains suggests that OGC diverged prior to Aquificales evolution. The phylogenetic tree identifies mis-annotations of the Aquificales BC sequences, including the Aquifex aeolicus pyruvate carboxylase structure. Notably, our structural data reveal that the OGC BC dimer comprises a “wet” dimerization interface that is dominated by hydrophilic interactions and structural water molecules common to all BC domains and likely facilitates the conformational changes associated with the catalytic cycle. Mutations in the dimerization domain demonstrate that dimerization contributes to thermal stability.</description><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu1DAURS0EokPhC5CQxYpFM7UdJ46X7ZRSpEpdUNaWYz83rpJ4sB2ps-MX-ot8CR7NgFixeLLe1bn3Sb4IvadkTQmj59qkde-DGWBaE0NIR5sXaEUbRiouZfMSrQghbcVkS07Qm5Qey8qJ4K_RSV3zlncdXaHnbzkuJi8RzvD1Mpvsw3yG9Wzx_QBx0iO-sHqb9V7HweE8AL70IfsZb3Tsw9Nu1AnwVZh0ka78BBG7GCZ8s7MxPMAcem1yEfM-LmwHPy4Js18_n--ewsO4ZB11hn-z3qJXTo8J3h3fU_T9-vP95qa6vfvydXNxW-masVzVrO-tdq4WPaGCNg2XonadlKItI7SElklBLDdAambb1jlrOeHGQu-IgPoUfTzkhpS9SsZnMIMJ8wwmK9o1QkhWoE8HaBvDjwVSVpNPBsZRzxCWpBgXktNO8Kag9QE1MaQUwalt9JOOO0WJ2hemSmHqWJg6FlZcH44Hln4C-9fzp6ECnB-AvfsxLHEun_LfyN9hqKe3</recordid><startdate>20210202</startdate><enddate>20210202</enddate><creator>Buhrman, Greg</creator><creator>Enríquez, Paul</creator><creator>Dillard, Lucas</creator><creator>Baer, Hayden</creator><creator>Truong, Vivian</creator><creator>Grunden, Amy M</creator><creator>Rose, Robert B</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9496-6671</orcidid><orcidid>https://orcid.org/0000000194966671</orcidid></search><sort><creationdate>20210202</creationdate><title>Structure, Function, and Thermal Adaptation of the Biotin Carboxylase Domain Dimer from Hydrogenobacter thermophilus 2‑Oxoglutarate Carboxylase</title><author>Buhrman, Greg ; Enríquez, Paul ; Dillard, Lucas ; Baer, Hayden ; Truong, Vivian ; Grunden, Amy M ; Rose, Robert B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a322t-32bbdaff37b0171554973f899769977a9e62970d4ce032d66ffdd404cdebf07e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buhrman, Greg</creatorcontrib><creatorcontrib>Enríquez, Paul</creatorcontrib><creatorcontrib>Dillard, Lucas</creatorcontrib><creatorcontrib>Baer, Hayden</creatorcontrib><creatorcontrib>Truong, Vivian</creatorcontrib><creatorcontrib>Grunden, Amy M</creatorcontrib><creatorcontrib>Rose, Robert B</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buhrman, Greg</au><au>Enríquez, Paul</au><au>Dillard, Lucas</au><au>Baer, Hayden</au><au>Truong, Vivian</au><au>Grunden, Amy M</au><au>Rose, Robert B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure, Function, and Thermal Adaptation of the Biotin Carboxylase Domain Dimer from Hydrogenobacter thermophilus 2‑Oxoglutarate Carboxylase</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2021-02-02</date><risdate>2021</risdate><volume>60</volume><issue>4</issue><spage>324</spage><epage>345</epage><pages>324-345</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>2-Oxoglutarate carboxylase (OGC), a unique member of the biotin-dependent carboxylase family from the order Aquificales, captures dissolved CO2 via the reductive tricarboxylic acid (rTCA) cycle. Structure and function studies of OGC may facilitate adaptation of the rTCA cycle to increase the level of carbon fixation for biofuel production. Here we compare the biotin carboxylase (BC) domain of Hydrogenobacter thermophilus OGC with the well-studied mesophilic homologues to identify features that may contribute to thermal stability and activity. We report three OGC BC X-ray structures, each bound to bicarbonate, ADP, or ADP-Mg2+, and propose that substrate binding at high temperatures is facilitated by interactions that stabilize the flexible subdomain B in a partially closed conformation. Kinetic measurements with varying ATP and biotin concentrations distinguish two temperature-dependent steps, consistent with biotin’s rate-limiting role in organizing the active site. Transition state thermodynamic values derived from the Eyring equation indicate a larger positive ΔH ⧧ and a less negative ΔS ⧧ compared to those of a previously reported mesophilic homologue. These thermodynamic values are explained by partially rate limiting product release. Phylogenetic analysis of BC domains suggests that OGC diverged prior to Aquificales evolution. The phylogenetic tree identifies mis-annotations of the Aquificales BC sequences, including the Aquifex aeolicus pyruvate carboxylase structure. Notably, our structural data reveal that the OGC BC dimer comprises a “wet” dimerization interface that is dominated by hydrophilic interactions and structural water molecules common to all BC domains and likely facilitates the conformational changes associated with the catalytic cycle. Mutations in the dimerization domain demonstrate that dimerization contributes to thermal stability.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33464881</pmid><doi>10.1021/acs.biochem.0c00815</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-9496-6671</orcidid><orcidid>https://orcid.org/0000000194966671</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2021-02, Vol.60 (4), p.324-345
issn 0006-2960
1520-4995
language eng
recordid cdi_osti_scitechconnect_1857792
source ACS Publications
title Structure, Function, and Thermal Adaptation of the Biotin Carboxylase Domain Dimer from Hydrogenobacter thermophilus 2‑Oxoglutarate Carboxylase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T13%3A23%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure,%20Function,%20and%20Thermal%20Adaptation%20of%20the%20Biotin%20Carboxylase%20Domain%20Dimer%20from%20Hydrogenobacter%20thermophilus%202%E2%80%91Oxoglutarate%20Carboxylase&rft.jtitle=Biochemistry%20(Easton)&rft.au=Buhrman,%20Greg&rft.date=2021-02-02&rft.volume=60&rft.issue=4&rft.spage=324&rft.epage=345&rft.pages=324-345&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/acs.biochem.0c00815&rft_dat=%3Cproquest_osti_%3E2479418745%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479418745&rft_id=info:pmid/33464881&rfr_iscdi=true