Wafer-Scalable Single-Layer Amorphous Molybdenum Trioxide
Molybdenum trioxide (MoO3), an important transition metal oxide (TMO), has been extensively investigated over the past few decades due to its potential in existing and emerging technologies, including catalysis, energy and data storage, electrochromic devices, and sensors. Recently, the growing inte...
Gespeichert in:
Veröffentlicht in: | ACS nano 2022-03, Vol.16 (3), p.3756-3767 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3767 |
---|---|
container_issue | 3 |
container_start_page | 3756 |
container_title | ACS nano |
container_volume | 16 |
creator | Alam, Md Hasibul Chowdhury, Sayema Roy, Anupam Wu, Xiaohan Ge, Ruijing Rodder, Michael A Chen, Jun Lu, Yang Stern, Chen Houben, Lothar Chrostowski, Robert Burlison, Scott R Yang, Sung Jin Serna, Martha I Dodabalapur, Ananth Mangolini, Filippo Naveh, Doron Lee, Jack C Banerjee, Sanjay K Warner, Jamie H Akinwande, Deji |
description | Molybdenum trioxide (MoO3), an important transition metal oxide (TMO), has been extensively investigated over the past few decades due to its potential in existing and emerging technologies, including catalysis, energy and data storage, electrochromic devices, and sensors. Recently, the growing interest in two-dimensional (2D) materials, often rich in interesting properties and functionalities compared to their bulk counterparts, has led to the investigation of 2D MoO3. However, the realization of large-area true 2D (single to few atom layers thick) MoO3 is yet to be achieved. Here, we demonstrate a facile route to obtain wafer-scale monolayer amorphous MoO3 using 2D MoS2 as a starting material, followed by UV–ozone oxidation at a substrate temperature as low as 120 °C. This simple yet effective process yields smooth, continuous, uniform, and stable monolayer oxide with wafer-scale homogeneity, as confirmed by several characterization techniques, including atomic force microscopy, numerous spectroscopy methods, and scanning transmission electron microscopy. Furthermore, using the subnanometer MoO3 as the active layer sandwiched between two metal electrodes, we demonstrate the thinnest oxide-based nonvolatile resistive switching memory with a low voltage operation and a high ON/OFF ratio. These results (potentially extendable to other TMOs) will enable further exploration of subnanometer stoichiometric MoO3, extending the frontiers of ultrathin flexible oxide materials and devices. |
doi_str_mv | 10.1021/acsnano.1c07705 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1857158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2631616773</sourcerecordid><originalsourceid>FETCH-LOGICAL-a360t-c0f8c694ba7c9f290dcdd15aa9c42333b2e0ab96d3cb9421ccdedf89b3fabd983</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMobk7P3mR4EqRb0qxJcxzDXzDxsIneQvIldR1tM5MW3H9vR-tunr738LwvHw9C1wRPCI7JVEGoVOUmBDDnODlBQyIoi3DKPk-POSEDdBHCFuOEp5ydowFNSJpSxodIfKjM-mgFqlC6sONVXn0VNlqqvfXjeen8buOaMH51xV4bWzXleO1z95Mbe4nOMlUEe9XfEXp_fFgvnqPl29PLYr6MFGW4jgBnKTAx04qDyGKBDRhDEqUEzGJKqY4tVlowQ0GLWUwAjDVZKjTNlDYipSN02-26UOcyQF5b2ICrKgu1JGnCSXKA7jpo5913Y0MtyzyALQpV2fZ_GTNKGGGc0xaddih4F4K3mdz5vFR-LwmWB6mylyp7qW3jph9vdGnNkf-z2AL3HdA25dY1vmqF_Dv3CxSggs8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2631616773</pqid></control><display><type>article</type><title>Wafer-Scalable Single-Layer Amorphous Molybdenum Trioxide</title><source>ACS Publications</source><creator>Alam, Md Hasibul ; Chowdhury, Sayema ; Roy, Anupam ; Wu, Xiaohan ; Ge, Ruijing ; Rodder, Michael A ; Chen, Jun ; Lu, Yang ; Stern, Chen ; Houben, Lothar ; Chrostowski, Robert ; Burlison, Scott R ; Yang, Sung Jin ; Serna, Martha I ; Dodabalapur, Ananth ; Mangolini, Filippo ; Naveh, Doron ; Lee, Jack C ; Banerjee, Sanjay K ; Warner, Jamie H ; Akinwande, Deji</creator><creatorcontrib>Alam, Md Hasibul ; Chowdhury, Sayema ; Roy, Anupam ; Wu, Xiaohan ; Ge, Ruijing ; Rodder, Michael A ; Chen, Jun ; Lu, Yang ; Stern, Chen ; Houben, Lothar ; Chrostowski, Robert ; Burlison, Scott R ; Yang, Sung Jin ; Serna, Martha I ; Dodabalapur, Ananth ; Mangolini, Filippo ; Naveh, Doron ; Lee, Jack C ; Banerjee, Sanjay K ; Warner, Jamie H ; Akinwande, Deji</creatorcontrib><description>Molybdenum trioxide (MoO3), an important transition metal oxide (TMO), has been extensively investigated over the past few decades due to its potential in existing and emerging technologies, including catalysis, energy and data storage, electrochromic devices, and sensors. Recently, the growing interest in two-dimensional (2D) materials, often rich in interesting properties and functionalities compared to their bulk counterparts, has led to the investigation of 2D MoO3. However, the realization of large-area true 2D (single to few atom layers thick) MoO3 is yet to be achieved. Here, we demonstrate a facile route to obtain wafer-scale monolayer amorphous MoO3 using 2D MoS2 as a starting material, followed by UV–ozone oxidation at a substrate temperature as low as 120 °C. This simple yet effective process yields smooth, continuous, uniform, and stable monolayer oxide with wafer-scale homogeneity, as confirmed by several characterization techniques, including atomic force microscopy, numerous spectroscopy methods, and scanning transmission electron microscopy. Furthermore, using the subnanometer MoO3 as the active layer sandwiched between two metal electrodes, we demonstrate the thinnest oxide-based nonvolatile resistive switching memory with a low voltage operation and a high ON/OFF ratio. These results (potentially extendable to other TMOs) will enable further exploration of subnanometer stoichiometric MoO3, extending the frontiers of ultrathin flexible oxide materials and devices.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.1c07705</identifier><identifier>PMID: 35188367</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2022-03, Vol.16 (3), p.3756-3767</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a360t-c0f8c694ba7c9f290dcdd15aa9c42333b2e0ab96d3cb9421ccdedf89b3fabd983</citedby><cites>FETCH-LOGICAL-a360t-c0f8c694ba7c9f290dcdd15aa9c42333b2e0ab96d3cb9421ccdedf89b3fabd983</cites><orcidid>0000-0002-4923-0873 ; 0000-0003-3360-9122 ; 0000-0003-1207-0981 ; 0000-0002-0768-3057 ; 0000-0001-7670-4846 ; 0000-0003-4327-8136 ; 0000-0001-7133-5586 ; 0000-0002-1271-2019 ; 0000-0003-1091-5661 ; 0000000207683057 ; 0000000171335586 ; 0000000333609122 ; 0000000212712019 ; 0000000343278136 ; 0000000312070981 ; 0000000249230873 ; 0000000310915661 ; 0000000176704846</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.1c07705$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.1c07705$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35188367$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1857158$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Alam, Md Hasibul</creatorcontrib><creatorcontrib>Chowdhury, Sayema</creatorcontrib><creatorcontrib>Roy, Anupam</creatorcontrib><creatorcontrib>Wu, Xiaohan</creatorcontrib><creatorcontrib>Ge, Ruijing</creatorcontrib><creatorcontrib>Rodder, Michael A</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Lu, Yang</creatorcontrib><creatorcontrib>Stern, Chen</creatorcontrib><creatorcontrib>Houben, Lothar</creatorcontrib><creatorcontrib>Chrostowski, Robert</creatorcontrib><creatorcontrib>Burlison, Scott R</creatorcontrib><creatorcontrib>Yang, Sung Jin</creatorcontrib><creatorcontrib>Serna, Martha I</creatorcontrib><creatorcontrib>Dodabalapur, Ananth</creatorcontrib><creatorcontrib>Mangolini, Filippo</creatorcontrib><creatorcontrib>Naveh, Doron</creatorcontrib><creatorcontrib>Lee, Jack C</creatorcontrib><creatorcontrib>Banerjee, Sanjay K</creatorcontrib><creatorcontrib>Warner, Jamie H</creatorcontrib><creatorcontrib>Akinwande, Deji</creatorcontrib><title>Wafer-Scalable Single-Layer Amorphous Molybdenum Trioxide</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Molybdenum trioxide (MoO3), an important transition metal oxide (TMO), has been extensively investigated over the past few decades due to its potential in existing and emerging technologies, including catalysis, energy and data storage, electrochromic devices, and sensors. Recently, the growing interest in two-dimensional (2D) materials, often rich in interesting properties and functionalities compared to their bulk counterparts, has led to the investigation of 2D MoO3. However, the realization of large-area true 2D (single to few atom layers thick) MoO3 is yet to be achieved. Here, we demonstrate a facile route to obtain wafer-scale monolayer amorphous MoO3 using 2D MoS2 as a starting material, followed by UV–ozone oxidation at a substrate temperature as low as 120 °C. This simple yet effective process yields smooth, continuous, uniform, and stable monolayer oxide with wafer-scale homogeneity, as confirmed by several characterization techniques, including atomic force microscopy, numerous spectroscopy methods, and scanning transmission electron microscopy. Furthermore, using the subnanometer MoO3 as the active layer sandwiched between two metal electrodes, we demonstrate the thinnest oxide-based nonvolatile resistive switching memory with a low voltage operation and a high ON/OFF ratio. These results (potentially extendable to other TMOs) will enable further exploration of subnanometer stoichiometric MoO3, extending the frontiers of ultrathin flexible oxide materials and devices.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAYhoMobk7P3mR4EqRb0qxJcxzDXzDxsIneQvIldR1tM5MW3H9vR-tunr738LwvHw9C1wRPCI7JVEGoVOUmBDDnODlBQyIoi3DKPk-POSEDdBHCFuOEp5ydowFNSJpSxodIfKjM-mgFqlC6sONVXn0VNlqqvfXjeen8buOaMH51xV4bWzXleO1z95Mbe4nOMlUEe9XfEXp_fFgvnqPl29PLYr6MFGW4jgBnKTAx04qDyGKBDRhDEqUEzGJKqY4tVlowQ0GLWUwAjDVZKjTNlDYipSN02-26UOcyQF5b2ICrKgu1JGnCSXKA7jpo5913Y0MtyzyALQpV2fZ_GTNKGGGc0xaddih4F4K3mdz5vFR-LwmWB6mylyp7qW3jph9vdGnNkf-z2AL3HdA25dY1vmqF_Dv3CxSggs8</recordid><startdate>20220322</startdate><enddate>20220322</enddate><creator>Alam, Md Hasibul</creator><creator>Chowdhury, Sayema</creator><creator>Roy, Anupam</creator><creator>Wu, Xiaohan</creator><creator>Ge, Ruijing</creator><creator>Rodder, Michael A</creator><creator>Chen, Jun</creator><creator>Lu, Yang</creator><creator>Stern, Chen</creator><creator>Houben, Lothar</creator><creator>Chrostowski, Robert</creator><creator>Burlison, Scott R</creator><creator>Yang, Sung Jin</creator><creator>Serna, Martha I</creator><creator>Dodabalapur, Ananth</creator><creator>Mangolini, Filippo</creator><creator>Naveh, Doron</creator><creator>Lee, Jack C</creator><creator>Banerjee, Sanjay K</creator><creator>Warner, Jamie H</creator><creator>Akinwande, Deji</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4923-0873</orcidid><orcidid>https://orcid.org/0000-0003-3360-9122</orcidid><orcidid>https://orcid.org/0000-0003-1207-0981</orcidid><orcidid>https://orcid.org/0000-0002-0768-3057</orcidid><orcidid>https://orcid.org/0000-0001-7670-4846</orcidid><orcidid>https://orcid.org/0000-0003-4327-8136</orcidid><orcidid>https://orcid.org/0000-0001-7133-5586</orcidid><orcidid>https://orcid.org/0000-0002-1271-2019</orcidid><orcidid>https://orcid.org/0000-0003-1091-5661</orcidid><orcidid>https://orcid.org/0000000207683057</orcidid><orcidid>https://orcid.org/0000000171335586</orcidid><orcidid>https://orcid.org/0000000333609122</orcidid><orcidid>https://orcid.org/0000000212712019</orcidid><orcidid>https://orcid.org/0000000343278136</orcidid><orcidid>https://orcid.org/0000000312070981</orcidid><orcidid>https://orcid.org/0000000249230873</orcidid><orcidid>https://orcid.org/0000000310915661</orcidid><orcidid>https://orcid.org/0000000176704846</orcidid></search><sort><creationdate>20220322</creationdate><title>Wafer-Scalable Single-Layer Amorphous Molybdenum Trioxide</title><author>Alam, Md Hasibul ; Chowdhury, Sayema ; Roy, Anupam ; Wu, Xiaohan ; Ge, Ruijing ; Rodder, Michael A ; Chen, Jun ; Lu, Yang ; Stern, Chen ; Houben, Lothar ; Chrostowski, Robert ; Burlison, Scott R ; Yang, Sung Jin ; Serna, Martha I ; Dodabalapur, Ananth ; Mangolini, Filippo ; Naveh, Doron ; Lee, Jack C ; Banerjee, Sanjay K ; Warner, Jamie H ; Akinwande, Deji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a360t-c0f8c694ba7c9f290dcdd15aa9c42333b2e0ab96d3cb9421ccdedf89b3fabd983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alam, Md Hasibul</creatorcontrib><creatorcontrib>Chowdhury, Sayema</creatorcontrib><creatorcontrib>Roy, Anupam</creatorcontrib><creatorcontrib>Wu, Xiaohan</creatorcontrib><creatorcontrib>Ge, Ruijing</creatorcontrib><creatorcontrib>Rodder, Michael A</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Lu, Yang</creatorcontrib><creatorcontrib>Stern, Chen</creatorcontrib><creatorcontrib>Houben, Lothar</creatorcontrib><creatorcontrib>Chrostowski, Robert</creatorcontrib><creatorcontrib>Burlison, Scott R</creatorcontrib><creatorcontrib>Yang, Sung Jin</creatorcontrib><creatorcontrib>Serna, Martha I</creatorcontrib><creatorcontrib>Dodabalapur, Ananth</creatorcontrib><creatorcontrib>Mangolini, Filippo</creatorcontrib><creatorcontrib>Naveh, Doron</creatorcontrib><creatorcontrib>Lee, Jack C</creatorcontrib><creatorcontrib>Banerjee, Sanjay K</creatorcontrib><creatorcontrib>Warner, Jamie H</creatorcontrib><creatorcontrib>Akinwande, Deji</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alam, Md Hasibul</au><au>Chowdhury, Sayema</au><au>Roy, Anupam</au><au>Wu, Xiaohan</au><au>Ge, Ruijing</au><au>Rodder, Michael A</au><au>Chen, Jun</au><au>Lu, Yang</au><au>Stern, Chen</au><au>Houben, Lothar</au><au>Chrostowski, Robert</au><au>Burlison, Scott R</au><au>Yang, Sung Jin</au><au>Serna, Martha I</au><au>Dodabalapur, Ananth</au><au>Mangolini, Filippo</au><au>Naveh, Doron</au><au>Lee, Jack C</au><au>Banerjee, Sanjay K</au><au>Warner, Jamie H</au><au>Akinwande, Deji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wafer-Scalable Single-Layer Amorphous Molybdenum Trioxide</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2022-03-22</date><risdate>2022</risdate><volume>16</volume><issue>3</issue><spage>3756</spage><epage>3767</epage><pages>3756-3767</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Molybdenum trioxide (MoO3), an important transition metal oxide (TMO), has been extensively investigated over the past few decades due to its potential in existing and emerging technologies, including catalysis, energy and data storage, electrochromic devices, and sensors. Recently, the growing interest in two-dimensional (2D) materials, often rich in interesting properties and functionalities compared to their bulk counterparts, has led to the investigation of 2D MoO3. However, the realization of large-area true 2D (single to few atom layers thick) MoO3 is yet to be achieved. Here, we demonstrate a facile route to obtain wafer-scale monolayer amorphous MoO3 using 2D MoS2 as a starting material, followed by UV–ozone oxidation at a substrate temperature as low as 120 °C. This simple yet effective process yields smooth, continuous, uniform, and stable monolayer oxide with wafer-scale homogeneity, as confirmed by several characterization techniques, including atomic force microscopy, numerous spectroscopy methods, and scanning transmission electron microscopy. Furthermore, using the subnanometer MoO3 as the active layer sandwiched between two metal electrodes, we demonstrate the thinnest oxide-based nonvolatile resistive switching memory with a low voltage operation and a high ON/OFF ratio. These results (potentially extendable to other TMOs) will enable further exploration of subnanometer stoichiometric MoO3, extending the frontiers of ultrathin flexible oxide materials and devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35188367</pmid><doi>10.1021/acsnano.1c07705</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4923-0873</orcidid><orcidid>https://orcid.org/0000-0003-3360-9122</orcidid><orcidid>https://orcid.org/0000-0003-1207-0981</orcidid><orcidid>https://orcid.org/0000-0002-0768-3057</orcidid><orcidid>https://orcid.org/0000-0001-7670-4846</orcidid><orcidid>https://orcid.org/0000-0003-4327-8136</orcidid><orcidid>https://orcid.org/0000-0001-7133-5586</orcidid><orcidid>https://orcid.org/0000-0002-1271-2019</orcidid><orcidid>https://orcid.org/0000-0003-1091-5661</orcidid><orcidid>https://orcid.org/0000000207683057</orcidid><orcidid>https://orcid.org/0000000171335586</orcidid><orcidid>https://orcid.org/0000000333609122</orcidid><orcidid>https://orcid.org/0000000212712019</orcidid><orcidid>https://orcid.org/0000000343278136</orcidid><orcidid>https://orcid.org/0000000312070981</orcidid><orcidid>https://orcid.org/0000000249230873</orcidid><orcidid>https://orcid.org/0000000310915661</orcidid><orcidid>https://orcid.org/0000000176704846</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2022-03, Vol.16 (3), p.3756-3767 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_osti_scitechconnect_1857158 |
source | ACS Publications |
title | Wafer-Scalable Single-Layer Amorphous Molybdenum Trioxide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A35%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wafer-Scalable%20Single-Layer%20Amorphous%20Molybdenum%20Trioxide&rft.jtitle=ACS%20nano&rft.au=Alam,%20Md%20Hasibul&rft.date=2022-03-22&rft.volume=16&rft.issue=3&rft.spage=3756&rft.epage=3767&rft.pages=3756-3767&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.1c07705&rft_dat=%3Cproquest_osti_%3E2631616773%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2631616773&rft_id=info:pmid/35188367&rfr_iscdi=true |