Numerical study of δ-function current sheets arising from resonant magnetic perturbations
General three-dimensional toroidal ideal magnetohydrodynamic equilibria with a continuum of nested flux surfaces are susceptible to forming singular current sheets when resonant perturbations are applied. The presence of singular current sheets indicates that, in the presence of non-zero resistivity...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2022-03, Vol.29 (3) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 29 |
creator | Huang, Yi-Min Hudson, Stuart R. Loizu, Joaquim Zhou, Yao Bhattacharjee, Amitava |
description | General three-dimensional toroidal ideal magnetohydrodynamic equilibria with a continuum of nested flux surfaces are susceptible to forming singular current sheets when resonant perturbations are applied. The presence of singular current sheets indicates that, in the presence of non-zero resistivity, magnetic reconnection will ensue, leading to the formation of magnetic islands and potentially regions of stochastic field lines when islands overlap. Numerically resolving singular current sheets in the ideal magnetohydrodynamics (MHD) limit has been a significant challenge. This work presents numerical solutions of the Hahm–Kulsrud–Taylor (HKT) problem, which is a prototype for resonant singular current sheet formation. The HKT problem is solved by two codes: a Grad–Shafranov (GS) solver and the Stepped Pressure Equilibrium Code (SPEC) code. The GS solver has built-in nested flux surfaces with prescribed magnetic fluxes. The SPEC code implements multi-region relaxed magnetohydrodynamics (MRxMHD), whereby the solution relaxes to a Taylor state in each region while maintaining force balance across the interfaces between regions. As the number of regions increases, the MRxMHD solution appears to approach the ideal MHD solution assuming a continuum of nested flux surfaces. We demonstrate agreement between the numerical solutions obtained from the two codes through a convergence study. |
doi_str_mv | 10.1063/5.0067898 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1856543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2642556331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-bb3ac63360311e297c8b9c5ac9a0c5cb9f195a1d480f726c9b51680880d83eaf3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqWw4AYWrEBKsePYcZYI8SdVsAEJsbGcqd2mauxiO4vei3NwJhLSNasZab6Zee8hdE7JjBLBbviMEFHKSh6gCSWyykpRFodDX5JMiOLjGJ3EuCaEFILLCfp86VoTGtAbHFO32GFv8c93ZjsHqfEOQxeCcQnHlTEpYh2a2LgltsG3OJjone6HrV46kxrAWxNSF2o9rMZTdGT1JpqzfZ2i94f7t7unbP76-Hx3O8-A8SJldc00CMYEYZSavCpB1hVwDZUmwKGuLK24potCElvmAqqaUyGJlGQhmdGWTdHFeNfH1KgITTKwAu-cgaSo5IIXrIcuR2gb_FdnYlJr3wXX61K5KHLOewW0p65GCoKPMRirtqFpddgpStSQr-Jqn2_PXo_s8PHP8T_wL-3pe5o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642556331</pqid></control><display><type>article</type><title>Numerical study of δ-function current sheets arising from resonant magnetic perturbations</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Huang, Yi-Min ; Hudson, Stuart R. ; Loizu, Joaquim ; Zhou, Yao ; Bhattacharjee, Amitava</creator><creatorcontrib>Huang, Yi-Min ; Hudson, Stuart R. ; Loizu, Joaquim ; Zhou, Yao ; Bhattacharjee, Amitava</creatorcontrib><description>General three-dimensional toroidal ideal magnetohydrodynamic equilibria with a continuum of nested flux surfaces are susceptible to forming singular current sheets when resonant perturbations are applied. The presence of singular current sheets indicates that, in the presence of non-zero resistivity, magnetic reconnection will ensue, leading to the formation of magnetic islands and potentially regions of stochastic field lines when islands overlap. Numerically resolving singular current sheets in the ideal magnetohydrodynamics (MHD) limit has been a significant challenge. This work presents numerical solutions of the Hahm–Kulsrud–Taylor (HKT) problem, which is a prototype for resonant singular current sheet formation. The HKT problem is solved by two codes: a Grad–Shafranov (GS) solver and the Stepped Pressure Equilibrium Code (SPEC) code. The GS solver has built-in nested flux surfaces with prescribed magnetic fluxes. The SPEC code implements multi-region relaxed magnetohydrodynamics (MRxMHD), whereby the solution relaxes to a Taylor state in each region while maintaining force balance across the interfaces between regions. As the number of regions increases, the MRxMHD solution appears to approach the ideal MHD solution assuming a continuum of nested flux surfaces. We demonstrate agreement between the numerical solutions obtained from the two codes through a convergence study.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0067898</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Current sheets ; Fluid flow ; Magnetic flux ; Magnetic islands ; Magnetohydrodynamics ; Perturbation ; Plasma physics ; Solvers</subject><ispartof>Physics of plasmas, 2022-03, Vol.29 (3)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-bb3ac63360311e297c8b9c5ac9a0c5cb9f195a1d480f726c9b51680880d83eaf3</citedby><cites>FETCH-LOGICAL-c354t-bb3ac63360311e297c8b9c5ac9a0c5cb9f195a1d480f726c9b51680880d83eaf3</cites><orcidid>0000-0001-6411-0178 ; 0000-0002-3616-2912 ; 0000-0002-4237-2211 ; 0000-0002-4862-7393 ; 0000000242372211 ; 0000000248627393 ; 0000000164110178 ; 0000000236162912</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/5.0067898$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4510,27922,27923,76154</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1856543$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Yi-Min</creatorcontrib><creatorcontrib>Hudson, Stuart R.</creatorcontrib><creatorcontrib>Loizu, Joaquim</creatorcontrib><creatorcontrib>Zhou, Yao</creatorcontrib><creatorcontrib>Bhattacharjee, Amitava</creatorcontrib><title>Numerical study of δ-function current sheets arising from resonant magnetic perturbations</title><title>Physics of plasmas</title><description>General three-dimensional toroidal ideal magnetohydrodynamic equilibria with a continuum of nested flux surfaces are susceptible to forming singular current sheets when resonant perturbations are applied. The presence of singular current sheets indicates that, in the presence of non-zero resistivity, magnetic reconnection will ensue, leading to the formation of magnetic islands and potentially regions of stochastic field lines when islands overlap. Numerically resolving singular current sheets in the ideal magnetohydrodynamics (MHD) limit has been a significant challenge. This work presents numerical solutions of the Hahm–Kulsrud–Taylor (HKT) problem, which is a prototype for resonant singular current sheet formation. The HKT problem is solved by two codes: a Grad–Shafranov (GS) solver and the Stepped Pressure Equilibrium Code (SPEC) code. The GS solver has built-in nested flux surfaces with prescribed magnetic fluxes. The SPEC code implements multi-region relaxed magnetohydrodynamics (MRxMHD), whereby the solution relaxes to a Taylor state in each region while maintaining force balance across the interfaces between regions. As the number of regions increases, the MRxMHD solution appears to approach the ideal MHD solution assuming a continuum of nested flux surfaces. We demonstrate agreement between the numerical solutions obtained from the two codes through a convergence study.</description><subject>Current sheets</subject><subject>Fluid flow</subject><subject>Magnetic flux</subject><subject>Magnetic islands</subject><subject>Magnetohydrodynamics</subject><subject>Perturbation</subject><subject>Plasma physics</subject><subject>Solvers</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqWw4AYWrEBKsePYcZYI8SdVsAEJsbGcqd2mauxiO4vei3NwJhLSNasZab6Zee8hdE7JjBLBbviMEFHKSh6gCSWyykpRFodDX5JMiOLjGJ3EuCaEFILLCfp86VoTGtAbHFO32GFv8c93ZjsHqfEOQxeCcQnHlTEpYh2a2LgltsG3OJjone6HrV46kxrAWxNSF2o9rMZTdGT1JpqzfZ2i94f7t7unbP76-Hx3O8-A8SJldc00CMYEYZSavCpB1hVwDZUmwKGuLK24potCElvmAqqaUyGJlGQhmdGWTdHFeNfH1KgITTKwAu-cgaSo5IIXrIcuR2gb_FdnYlJr3wXX61K5KHLOewW0p65GCoKPMRirtqFpddgpStSQr-Jqn2_PXo_s8PHP8T_wL-3pe5o</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Huang, Yi-Min</creator><creator>Hudson, Stuart R.</creator><creator>Loizu, Joaquim</creator><creator>Zhou, Yao</creator><creator>Bhattacharjee, Amitava</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6411-0178</orcidid><orcidid>https://orcid.org/0000-0002-3616-2912</orcidid><orcidid>https://orcid.org/0000-0002-4237-2211</orcidid><orcidid>https://orcid.org/0000-0002-4862-7393</orcidid><orcidid>https://orcid.org/0000000242372211</orcidid><orcidid>https://orcid.org/0000000248627393</orcidid><orcidid>https://orcid.org/0000000164110178</orcidid><orcidid>https://orcid.org/0000000236162912</orcidid></search><sort><creationdate>202203</creationdate><title>Numerical study of δ-function current sheets arising from resonant magnetic perturbations</title><author>Huang, Yi-Min ; Hudson, Stuart R. ; Loizu, Joaquim ; Zhou, Yao ; Bhattacharjee, Amitava</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-bb3ac63360311e297c8b9c5ac9a0c5cb9f195a1d480f726c9b51680880d83eaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Current sheets</topic><topic>Fluid flow</topic><topic>Magnetic flux</topic><topic>Magnetic islands</topic><topic>Magnetohydrodynamics</topic><topic>Perturbation</topic><topic>Plasma physics</topic><topic>Solvers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yi-Min</creatorcontrib><creatorcontrib>Hudson, Stuart R.</creatorcontrib><creatorcontrib>Loizu, Joaquim</creatorcontrib><creatorcontrib>Zhou, Yao</creatorcontrib><creatorcontrib>Bhattacharjee, Amitava</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Yi-Min</au><au>Hudson, Stuart R.</au><au>Loizu, Joaquim</au><au>Zhou, Yao</au><au>Bhattacharjee, Amitava</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical study of δ-function current sheets arising from resonant magnetic perturbations</atitle><jtitle>Physics of plasmas</jtitle><date>2022-03</date><risdate>2022</risdate><volume>29</volume><issue>3</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>General three-dimensional toroidal ideal magnetohydrodynamic equilibria with a continuum of nested flux surfaces are susceptible to forming singular current sheets when resonant perturbations are applied. The presence of singular current sheets indicates that, in the presence of non-zero resistivity, magnetic reconnection will ensue, leading to the formation of magnetic islands and potentially regions of stochastic field lines when islands overlap. Numerically resolving singular current sheets in the ideal magnetohydrodynamics (MHD) limit has been a significant challenge. This work presents numerical solutions of the Hahm–Kulsrud–Taylor (HKT) problem, which is a prototype for resonant singular current sheet formation. The HKT problem is solved by two codes: a Grad–Shafranov (GS) solver and the Stepped Pressure Equilibrium Code (SPEC) code. The GS solver has built-in nested flux surfaces with prescribed magnetic fluxes. The SPEC code implements multi-region relaxed magnetohydrodynamics (MRxMHD), whereby the solution relaxes to a Taylor state in each region while maintaining force balance across the interfaces between regions. As the number of regions increases, the MRxMHD solution appears to approach the ideal MHD solution assuming a continuum of nested flux surfaces. We demonstrate agreement between the numerical solutions obtained from the two codes through a convergence study.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0067898</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6411-0178</orcidid><orcidid>https://orcid.org/0000-0002-3616-2912</orcidid><orcidid>https://orcid.org/0000-0002-4237-2211</orcidid><orcidid>https://orcid.org/0000-0002-4862-7393</orcidid><orcidid>https://orcid.org/0000000242372211</orcidid><orcidid>https://orcid.org/0000000248627393</orcidid><orcidid>https://orcid.org/0000000164110178</orcidid><orcidid>https://orcid.org/0000000236162912</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2022-03, Vol.29 (3) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_osti_scitechconnect_1856543 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Current sheets Fluid flow Magnetic flux Magnetic islands Magnetohydrodynamics Perturbation Plasma physics Solvers |
title | Numerical study of δ-function current sheets arising from resonant magnetic perturbations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A45%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20study%20of%20%CE%B4-function%20current%20sheets%20arising%20from%20resonant%20magnetic%20perturbations&rft.jtitle=Physics%20of%20plasmas&rft.au=Huang,%20Yi-Min&rft.date=2022-03&rft.volume=29&rft.issue=3&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0067898&rft_dat=%3Cproquest_osti_%3E2642556331%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2642556331&rft_id=info:pmid/&rfr_iscdi=true |