Newton, entanglement, and the graviton

Many experiments have recently been proposed to test whether nonrelativistic gravitational interactions can generate entanglement. In this paper, I consider the extent to which these experiments can test if the graviton exists. Assuming unitarity and Lorentz invariance of the S-matrix, I demonstrate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2022-01, Vol.105 (2), Article 024029
1. Verfasser: Carney, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Physical review. D
container_volume 105
creator Carney, Daniel
description Many experiments have recently been proposed to test whether nonrelativistic gravitational interactions can generate entanglement. In this paper, I consider the extent to which these experiments can test if the graviton exists. Assuming unitarity and Lorentz invariance of the S-matrix, I demonstrate that this "Newtonian entanglement" requires the existence of massless bosons, universally coupled to mass, in the Hilbert space of low-energy scattering states. These bosons could be the usual spin-2 gravitons, but in principle there are other possibilities like spin-0 scalar gravitons. I suggest a concept for a more refined experiment to rule these out. The special role of d=3+1 spacetime dimensions and the possibility that unitarity is violated by gravity are highlighted.
doi_str_mv 10.1103/PhysRevD.105.024029
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1856229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevD_105_024029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2369-88807805fade42221e554a494c1ef8e3b8a499408bf59fa2a706a6c1d2c140ec3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsNT-Ai_Bg6cmzuxHsnuU-glFRfS8bDezTaRNJBsq_feuVD3NM--8zOFh7ByhQARx9dLs4yvtbgoEVQCXwM0Rm3BZQQ6Jj_8Z4ZTNYvyAhCWYCnHCLp_oa-y7eUbd6Lr1hrYJ5pnr6mxsKFsPbtem-xk7CW4TafY7p-z97vZt8ZAvn-8fF9fL3HNRmlxrDZUGFVxNknOOpJR00kiPFDSJlU6LkaBXQZnguKugdKXHmnuUQF5M2cXhbx_H1kbfjuQb33cd-dGiViXnJpXEoeSHPsaBgv0c2q0b9hbB_iixf0pSoOxBifgGBLtT1Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Newton, entanglement, and the graviton</title><source>American Physical Society Journals</source><creator>Carney, Daniel</creator><creatorcontrib>Carney, Daniel ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Many experiments have recently been proposed to test whether nonrelativistic gravitational interactions can generate entanglement. In this paper, I consider the extent to which these experiments can test if the graviton exists. Assuming unitarity and Lorentz invariance of the S-matrix, I demonstrate that this "Newtonian entanglement" requires the existence of massless bosons, universally coupled to mass, in the Hilbert space of low-energy scattering states. These bosons could be the usual spin-2 gravitons, but in principle there are other possibilities like spin-0 scalar gravitons. I suggest a concept for a more refined experiment to rule these out. The special role of d=3+1 spacetime dimensions and the possibility that unitarity is violated by gravity are highlighted.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.105.024029</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>Experimental studies of gravity ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; quantum entanglement ; quantum gravity ; scattering amplitudes</subject><ispartof>Physical review. D, 2022-01, Vol.105 (2), Article 024029</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2369-88807805fade42221e554a494c1ef8e3b8a499408bf59fa2a706a6c1d2c140ec3</citedby><cites>FETCH-LOGICAL-c2369-88807805fade42221e554a494c1ef8e3b8a499408bf59fa2a706a6c1d2c140ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1856229$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Carney, Daniel</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Newton, entanglement, and the graviton</title><title>Physical review. D</title><description>Many experiments have recently been proposed to test whether nonrelativistic gravitational interactions can generate entanglement. In this paper, I consider the extent to which these experiments can test if the graviton exists. Assuming unitarity and Lorentz invariance of the S-matrix, I demonstrate that this "Newtonian entanglement" requires the existence of massless bosons, universally coupled to mass, in the Hilbert space of low-energy scattering states. These bosons could be the usual spin-2 gravitons, but in principle there are other possibilities like spin-0 scalar gravitons. I suggest a concept for a more refined experiment to rule these out. The special role of d=3+1 spacetime dimensions and the possibility that unitarity is violated by gravity are highlighted.</description><subject>Experimental studies of gravity</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>quantum entanglement</subject><subject>quantum gravity</subject><subject>scattering amplitudes</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsNT-Ai_Bg6cmzuxHsnuU-glFRfS8bDezTaRNJBsq_feuVD3NM--8zOFh7ByhQARx9dLs4yvtbgoEVQCXwM0Rm3BZQQ6Jj_8Z4ZTNYvyAhCWYCnHCLp_oa-y7eUbd6Lr1hrYJ5pnr6mxsKFsPbtem-xk7CW4TafY7p-z97vZt8ZAvn-8fF9fL3HNRmlxrDZUGFVxNknOOpJR00kiPFDSJlU6LkaBXQZnguKugdKXHmnuUQF5M2cXhbx_H1kbfjuQb33cd-dGiViXnJpXEoeSHPsaBgv0c2q0b9hbB_iixf0pSoOxBifgGBLtT1Q</recordid><startdate>20220115</startdate><enddate>20220115</enddate><creator>Carney, Daniel</creator><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20220115</creationdate><title>Newton, entanglement, and the graviton</title><author>Carney, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2369-88807805fade42221e554a494c1ef8e3b8a499408bf59fa2a706a6c1d2c140ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Experimental studies of gravity</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>quantum entanglement</topic><topic>quantum gravity</topic><topic>scattering amplitudes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carney, Daniel</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carney, Daniel</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Newton, entanglement, and the graviton</atitle><jtitle>Physical review. D</jtitle><date>2022-01-15</date><risdate>2022</risdate><volume>105</volume><issue>2</issue><artnum>024029</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>Many experiments have recently been proposed to test whether nonrelativistic gravitational interactions can generate entanglement. In this paper, I consider the extent to which these experiments can test if the graviton exists. Assuming unitarity and Lorentz invariance of the S-matrix, I demonstrate that this "Newtonian entanglement" requires the existence of massless bosons, universally coupled to mass, in the Hilbert space of low-energy scattering states. These bosons could be the usual spin-2 gravitons, but in principle there are other possibilities like spin-0 scalar gravitons. I suggest a concept for a more refined experiment to rule these out. The special role of d=3+1 spacetime dimensions and the possibility that unitarity is violated by gravity are highlighted.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevD.105.024029</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2022-01, Vol.105 (2), Article 024029
issn 2470-0010
2470-0029
language eng
recordid cdi_osti_scitechconnect_1856229
source American Physical Society Journals
subjects Experimental studies of gravity
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
quantum entanglement
quantum gravity
scattering amplitudes
title Newton, entanglement, and the graviton
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A07%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Newton,%20entanglement,%20and%20the%20graviton&rft.jtitle=Physical%20review.%20D&rft.au=Carney,%20Daniel&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2022-01-15&rft.volume=105&rft.issue=2&rft.artnum=024029&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.105.024029&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevD_105_024029%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true