Newton, entanglement, and the graviton
Many experiments have recently been proposed to test whether nonrelativistic gravitational interactions can generate entanglement. In this paper, I consider the extent to which these experiments can test if the graviton exists. Assuming unitarity and Lorentz invariance of the S-matrix, I demonstrate...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2022-01, Vol.105 (2), Article 024029 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Physical review. D |
container_volume | 105 |
creator | Carney, Daniel |
description | Many experiments have recently been proposed to test whether nonrelativistic gravitational interactions can generate entanglement. In this paper, I consider the extent to which these experiments can test if the graviton exists. Assuming unitarity and Lorentz invariance of the S-matrix, I demonstrate that this "Newtonian entanglement" requires the existence of massless bosons, universally coupled to mass, in the Hilbert space of low-energy scattering states. These bosons could be the usual spin-2 gravitons, but in principle there are other possibilities like spin-0 scalar gravitons. I suggest a concept for a more refined experiment to rule these out. The special role of d=3+1 spacetime dimensions and the possibility that unitarity is violated by gravity are highlighted. |
doi_str_mv | 10.1103/PhysRevD.105.024029 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1856229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevD_105_024029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2369-88807805fade42221e554a494c1ef8e3b8a499408bf59fa2a706a6c1d2c140ec3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsNT-Ai_Bg6cmzuxHsnuU-glFRfS8bDezTaRNJBsq_feuVD3NM--8zOFh7ByhQARx9dLs4yvtbgoEVQCXwM0Rm3BZQQ6Jj_8Z4ZTNYvyAhCWYCnHCLp_oa-y7eUbd6Lr1hrYJ5pnr6mxsKFsPbtem-xk7CW4TafY7p-z97vZt8ZAvn-8fF9fL3HNRmlxrDZUGFVxNknOOpJR00kiPFDSJlU6LkaBXQZnguKugdKXHmnuUQF5M2cXhbx_H1kbfjuQb33cd-dGiViXnJpXEoeSHPsaBgv0c2q0b9hbB_iixf0pSoOxBifgGBLtT1Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Newton, entanglement, and the graviton</title><source>American Physical Society Journals</source><creator>Carney, Daniel</creator><creatorcontrib>Carney, Daniel ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Many experiments have recently been proposed to test whether nonrelativistic gravitational interactions can generate entanglement. In this paper, I consider the extent to which these experiments can test if the graviton exists. Assuming unitarity and Lorentz invariance of the S-matrix, I demonstrate that this "Newtonian entanglement" requires the existence of massless bosons, universally coupled to mass, in the Hilbert space of low-energy scattering states. These bosons could be the usual spin-2 gravitons, but in principle there are other possibilities like spin-0 scalar gravitons. I suggest a concept for a more refined experiment to rule these out. The special role of d=3+1 spacetime dimensions and the possibility that unitarity is violated by gravity are highlighted.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.105.024029</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>Experimental studies of gravity ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; quantum entanglement ; quantum gravity ; scattering amplitudes</subject><ispartof>Physical review. D, 2022-01, Vol.105 (2), Article 024029</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2369-88807805fade42221e554a494c1ef8e3b8a499408bf59fa2a706a6c1d2c140ec3</citedby><cites>FETCH-LOGICAL-c2369-88807805fade42221e554a494c1ef8e3b8a499408bf59fa2a706a6c1d2c140ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1856229$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Carney, Daniel</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Newton, entanglement, and the graviton</title><title>Physical review. D</title><description>Many experiments have recently been proposed to test whether nonrelativistic gravitational interactions can generate entanglement. In this paper, I consider the extent to which these experiments can test if the graviton exists. Assuming unitarity and Lorentz invariance of the S-matrix, I demonstrate that this "Newtonian entanglement" requires the existence of massless bosons, universally coupled to mass, in the Hilbert space of low-energy scattering states. These bosons could be the usual spin-2 gravitons, but in principle there are other possibilities like spin-0 scalar gravitons. I suggest a concept for a more refined experiment to rule these out. The special role of d=3+1 spacetime dimensions and the possibility that unitarity is violated by gravity are highlighted.</description><subject>Experimental studies of gravity</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>quantum entanglement</subject><subject>quantum gravity</subject><subject>scattering amplitudes</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsNT-Ai_Bg6cmzuxHsnuU-glFRfS8bDezTaRNJBsq_feuVD3NM--8zOFh7ByhQARx9dLs4yvtbgoEVQCXwM0Rm3BZQQ6Jj_8Z4ZTNYvyAhCWYCnHCLp_oa-y7eUbd6Lr1hrYJ5pnr6mxsKFsPbtem-xk7CW4TafY7p-z97vZt8ZAvn-8fF9fL3HNRmlxrDZUGFVxNknOOpJR00kiPFDSJlU6LkaBXQZnguKugdKXHmnuUQF5M2cXhbx_H1kbfjuQb33cd-dGiViXnJpXEoeSHPsaBgv0c2q0b9hbB_iixf0pSoOxBifgGBLtT1Q</recordid><startdate>20220115</startdate><enddate>20220115</enddate><creator>Carney, Daniel</creator><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20220115</creationdate><title>Newton, entanglement, and the graviton</title><author>Carney, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2369-88807805fade42221e554a494c1ef8e3b8a499408bf59fa2a706a6c1d2c140ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Experimental studies of gravity</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>quantum entanglement</topic><topic>quantum gravity</topic><topic>scattering amplitudes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carney, Daniel</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carney, Daniel</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Newton, entanglement, and the graviton</atitle><jtitle>Physical review. D</jtitle><date>2022-01-15</date><risdate>2022</risdate><volume>105</volume><issue>2</issue><artnum>024029</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>Many experiments have recently been proposed to test whether nonrelativistic gravitational interactions can generate entanglement. In this paper, I consider the extent to which these experiments can test if the graviton exists. Assuming unitarity and Lorentz invariance of the S-matrix, I demonstrate that this "Newtonian entanglement" requires the existence of massless bosons, universally coupled to mass, in the Hilbert space of low-energy scattering states. These bosons could be the usual spin-2 gravitons, but in principle there are other possibilities like spin-0 scalar gravitons. I suggest a concept for a more refined experiment to rule these out. The special role of d=3+1 spacetime dimensions and the possibility that unitarity is violated by gravity are highlighted.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevD.105.024029</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2022-01, Vol.105 (2), Article 024029 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_osti_scitechconnect_1856229 |
source | American Physical Society Journals |
subjects | Experimental studies of gravity PHYSICS OF ELEMENTARY PARTICLES AND FIELDS quantum entanglement quantum gravity scattering amplitudes |
title | Newton, entanglement, and the graviton |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A07%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Newton,%20entanglement,%20and%20the%20graviton&rft.jtitle=Physical%20review.%20D&rft.au=Carney,%20Daniel&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2022-01-15&rft.volume=105&rft.issue=2&rft.artnum=024029&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.105.024029&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevD_105_024029%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |