Solving the structure of “single-atom” catalysts using machine learning – assisted XANES analysis

We show that "single-atom” catalysts (SACs) have demonstrated excellent activity and selectivity in challenging chemical transformations such as photocatalytic CO2 reduction. For heterogeneous photocatalytic SAC systems, it is essential to obtain sufficient information of their structure at the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2022-02, Vol.24 (8)
Hauptverfasser: Xiang, Shuting, Huang, Peipei, Li, Junying, Liu, Yang, Marcella, Nicholas, Routh, Prahlad K., Li, Gonghu, Frenkel, Anatoly I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Physical chemistry chemical physics : PCCP
container_volume 24
creator Xiang, Shuting
Huang, Peipei
Li, Junying
Liu, Yang
Marcella, Nicholas
Routh, Prahlad K.
Li, Gonghu
Frenkel, Anatoly I.
description We show that "single-atom” catalysts (SACs) have demonstrated excellent activity and selectivity in challenging chemical transformations such as photocatalytic CO2 reduction. For heterogeneous photocatalytic SAC systems, it is essential to obtain sufficient information of their structure at the atomic level in order to understand reaction mechanisms. In this work, a SAC was prepared by grafting a molecular cobalt catalyst on a light-absorbing carbon nitride surface. Due to the sensitivity of the X-ray absorption near edge structure (XANES) spectra to subtle variances in the Co SAC structure in reaction conditions, different machine learning (ML) methods, including principal component analysis, K-means clustering, and neural network (NN), were utilized for in situ Co XANES data analysis. As a result, we obtained quantitative structural information of the SAC nearest atomic environment thereby extending the NN-XANES approach previously demonstrated for nanoparticles and size-selective clusters.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1855095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1855095</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18550953</originalsourceid><addsrcrecordid>eNqNi7sKwkAQRRdRMD7-YbAPbIjxUYpErGy0sJNlnSQr6y5kJoJd_sFWfy5fogGxtrqHe-7tiCCazuJwKRfT7o_ns74YEF2klFESxYHI997ejMuBCwTistJclQg-g6Z-0kdYDBX7a1O_QCtW9k5MULUGrkoXxiFYVKVri6Z-gCIyxHiG42qX7kG59mJoJHqZsoTjbw7FZJMe1tvQE5sTacOoC-2dQ82naJEkcpnEf43eYYVLpA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solving the structure of “single-atom” catalysts using machine learning – assisted XANES analysis</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Xiang, Shuting ; Huang, Peipei ; Li, Junying ; Liu, Yang ; Marcella, Nicholas ; Routh, Prahlad K. ; Li, Gonghu ; Frenkel, Anatoly I.</creator><creatorcontrib>Xiang, Shuting ; Huang, Peipei ; Li, Junying ; Liu, Yang ; Marcella, Nicholas ; Routh, Prahlad K. ; Li, Gonghu ; Frenkel, Anatoly I. ; Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><description>We show that "single-atom” catalysts (SACs) have demonstrated excellent activity and selectivity in challenging chemical transformations such as photocatalytic CO2 reduction. For heterogeneous photocatalytic SAC systems, it is essential to obtain sufficient information of their structure at the atomic level in order to understand reaction mechanisms. In this work, a SAC was prepared by grafting a molecular cobalt catalyst on a light-absorbing carbon nitride surface. Due to the sensitivity of the X-ray absorption near edge structure (XANES) spectra to subtle variances in the Co SAC structure in reaction conditions, different machine learning (ML) methods, including principal component analysis, K-means clustering, and neural network (NN), were utilized for in situ Co XANES data analysis. As a result, we obtained quantitative structural information of the SAC nearest atomic environment thereby extending the NN-XANES approach previously demonstrated for nanoparticles and size-selective clusters.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><language>eng</language><publisher>United States: Royal Society of Chemistry</publisher><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><ispartof>Physical chemistry chemical physics : PCCP, 2022-02, Vol.24 (8)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000194233347 ; 0000000254511207 ; 0000000229243597</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1855095$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiang, Shuting</creatorcontrib><creatorcontrib>Huang, Peipei</creatorcontrib><creatorcontrib>Li, Junying</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Marcella, Nicholas</creatorcontrib><creatorcontrib>Routh, Prahlad K.</creatorcontrib><creatorcontrib>Li, Gonghu</creatorcontrib><creatorcontrib>Frenkel, Anatoly I.</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><title>Solving the structure of “single-atom” catalysts using machine learning – assisted XANES analysis</title><title>Physical chemistry chemical physics : PCCP</title><description>We show that "single-atom” catalysts (SACs) have demonstrated excellent activity and selectivity in challenging chemical transformations such as photocatalytic CO2 reduction. For heterogeneous photocatalytic SAC systems, it is essential to obtain sufficient information of their structure at the atomic level in order to understand reaction mechanisms. In this work, a SAC was prepared by grafting a molecular cobalt catalyst on a light-absorbing carbon nitride surface. Due to the sensitivity of the X-ray absorption near edge structure (XANES) spectra to subtle variances in the Co SAC structure in reaction conditions, different machine learning (ML) methods, including principal component analysis, K-means clustering, and neural network (NN), were utilized for in situ Co XANES data analysis. As a result, we obtained quantitative structural information of the SAC nearest atomic environment thereby extending the NN-XANES approach previously demonstrated for nanoparticles and size-selective clusters.</description><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNi7sKwkAQRRdRMD7-YbAPbIjxUYpErGy0sJNlnSQr6y5kJoJd_sFWfy5fogGxtrqHe-7tiCCazuJwKRfT7o_ns74YEF2klFESxYHI997ejMuBCwTistJclQg-g6Z-0kdYDBX7a1O_QCtW9k5MULUGrkoXxiFYVKVri6Z-gCIyxHiG42qX7kG59mJoJHqZsoTjbw7FZJMe1tvQE5sTacOoC-2dQ82naJEkcpnEf43eYYVLpA</recordid><startdate>20220204</startdate><enddate>20220204</enddate><creator>Xiang, Shuting</creator><creator>Huang, Peipei</creator><creator>Li, Junying</creator><creator>Liu, Yang</creator><creator>Marcella, Nicholas</creator><creator>Routh, Prahlad K.</creator><creator>Li, Gonghu</creator><creator>Frenkel, Anatoly I.</creator><general>Royal Society of Chemistry</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000194233347</orcidid><orcidid>https://orcid.org/0000000254511207</orcidid><orcidid>https://orcid.org/0000000229243597</orcidid></search><sort><creationdate>20220204</creationdate><title>Solving the structure of “single-atom” catalysts using machine learning – assisted XANES analysis</title><author>Xiang, Shuting ; Huang, Peipei ; Li, Junying ; Liu, Yang ; Marcella, Nicholas ; Routh, Prahlad K. ; Li, Gonghu ; Frenkel, Anatoly I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18550953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Shuting</creatorcontrib><creatorcontrib>Huang, Peipei</creatorcontrib><creatorcontrib>Li, Junying</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Marcella, Nicholas</creatorcontrib><creatorcontrib>Routh, Prahlad K.</creatorcontrib><creatorcontrib>Li, Gonghu</creatorcontrib><creatorcontrib>Frenkel, Anatoly I.</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Shuting</au><au>Huang, Peipei</au><au>Li, Junying</au><au>Liu, Yang</au><au>Marcella, Nicholas</au><au>Routh, Prahlad K.</au><au>Li, Gonghu</au><au>Frenkel, Anatoly I.</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving the structure of “single-atom” catalysts using machine learning – assisted XANES analysis</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2022-02-04</date><risdate>2022</risdate><volume>24</volume><issue>8</issue><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>We show that "single-atom” catalysts (SACs) have demonstrated excellent activity and selectivity in challenging chemical transformations such as photocatalytic CO2 reduction. For heterogeneous photocatalytic SAC systems, it is essential to obtain sufficient information of their structure at the atomic level in order to understand reaction mechanisms. In this work, a SAC was prepared by grafting a molecular cobalt catalyst on a light-absorbing carbon nitride surface. Due to the sensitivity of the X-ray absorption near edge structure (XANES) spectra to subtle variances in the Co SAC structure in reaction conditions, different machine learning (ML) methods, including principal component analysis, K-means clustering, and neural network (NN), were utilized for in situ Co XANES data analysis. As a result, we obtained quantitative structural information of the SAC nearest atomic environment thereby extending the NN-XANES approach previously demonstrated for nanoparticles and size-selective clusters.</abstract><cop>United States</cop><pub>Royal Society of Chemistry</pub><orcidid>https://orcid.org/0000000194233347</orcidid><orcidid>https://orcid.org/0000000254511207</orcidid><orcidid>https://orcid.org/0000000229243597</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2022-02, Vol.24 (8)
issn 1463-9076
1463-9084
language eng
recordid cdi_osti_scitechconnect_1855095
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
title Solving the structure of “single-atom” catalysts using machine learning – assisted XANES analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A13%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20the%20structure%20of%20%E2%80%9Csingle-atom%E2%80%9D%20catalysts%20using%20machine%20learning%20%E2%80%93%20assisted%20XANES%20analysis&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Xiang,%20Shuting&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2022-02-04&rft.volume=24&rft.issue=8&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/&rft_dat=%3Costi%3E1855095%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true