Electrochemical Pumping for Challenging Hydrogen Separations
Conventional hydrogen separations from reformed hydrocarbons often deploy a water gas shift (WGS) reactor to convert CO to CO2, followed by adsorption processes to achieve pure hydrogen. The purified hydrogen is then fed to a compressor to deliver hydrogen at high pressures. Electrochemical hydrogen...
Gespeichert in:
Veröffentlicht in: | ACS energy letters 2022-04, Vol.7 (4), p.1322-1329 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1329 |
---|---|
container_issue | 4 |
container_start_page | 1322 |
container_title | ACS energy letters |
container_volume | 7 |
creator | Venugopalan, Gokul Bhattacharya, Deepra Andrews, Evan Briceno-Mena, Luis Romagnoli, José Flake, John Arges, Christopher G |
description | Conventional hydrogen separations from reformed hydrocarbons often deploy a water gas shift (WGS) reactor to convert CO to CO2, followed by adsorption processes to achieve pure hydrogen. The purified hydrogen is then fed to a compressor to deliver hydrogen at high pressures. Electrochemical hydrogen pumps (EHPs) featuring proton-selective polymer electrolyte membranes (PEMs) represent an alternative separation platform with fewer unit operations because they can simultaneously separate and compress hydrogen continuously. In this work, a high-temperature PEM (HT-PEM) EHP purified hydrogen to 99.3%, with greater than 85% hydrogen recovery for feed mixtures containing 25–40% CO. The ion-pair HT-PEM and phosphonic acid ionomer binder enabled the EHP to be operated in the temperature range from 160 to 220 °C. The ability to operate the EHP at an elevated temperature allowed the EHP to purify hydrogen from gas feeds with large CO contents at 1 A cm–2. Finally, the EHP with the said materials displayed a small performance loss of 12 μV h–1 for purifying hydrogen from syngas for 100 h at 200 °C. |
doi_str_mv | 10.1021/acsenergylett.1c02853 |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1854607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b111614098</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3503-47771358f0b65055ed09896e8bfe23ca3b69381b6c2e545b05cb862239bacc093</originalsourceid><addsrcrecordid>eNqFkMFqwzAMhs3YYKXrIwzC7unkuHYc2GWUbh0UNth2NraqpCmpXez00LdfSnvYTkMHSej_hfQxds9hyqHgjxYTeYrNsaO-n3KEQktxxUaF0JBrXsnrX_Utm6S0BQCutBxixJ4WHWEfA25o16Ltso_Dbt_6JqtDzOYb23Xkm1O_PK5jaMhnn7S30fZt8OmO3dS2SzS55DH7fll8zZf56v31bf68yq2QIPJZWZZcSF2DUxKkpDVUulKkXU2FQCucqoTmTmFBciYdSHRaFYWonEWESozZw3lvSH1rErY94QaD98Pphms5U1AOInkWYQwpRarNPrY7G4-GgzmhMn9QmQuqwcfPvmFstuEQ_fDKP54fLndxDg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electrochemical Pumping for Challenging Hydrogen Separations</title><source>American Chemical Society Journals</source><creator>Venugopalan, Gokul ; Bhattacharya, Deepra ; Andrews, Evan ; Briceno-Mena, Luis ; Romagnoli, José ; Flake, John ; Arges, Christopher G</creator><creatorcontrib>Venugopalan, Gokul ; Bhattacharya, Deepra ; Andrews, Evan ; Briceno-Mena, Luis ; Romagnoli, José ; Flake, John ; Arges, Christopher G ; Louisiana State Univ., Baton Rouge, LA (United States)</creatorcontrib><description>Conventional hydrogen separations from reformed hydrocarbons often deploy a water gas shift (WGS) reactor to convert CO to CO2, followed by adsorption processes to achieve pure hydrogen. The purified hydrogen is then fed to a compressor to deliver hydrogen at high pressures. Electrochemical hydrogen pumps (EHPs) featuring proton-selective polymer electrolyte membranes (PEMs) represent an alternative separation platform with fewer unit operations because they can simultaneously separate and compress hydrogen continuously. In this work, a high-temperature PEM (HT-PEM) EHP purified hydrogen to 99.3%, with greater than 85% hydrogen recovery for feed mixtures containing 25–40% CO. The ion-pair HT-PEM and phosphonic acid ionomer binder enabled the EHP to be operated in the temperature range from 160 to 220 °C. The ability to operate the EHP at an elevated temperature allowed the EHP to purify hydrogen from gas feeds with large CO contents at 1 A cm–2. Finally, the EHP with the said materials displayed a small performance loss of 12 μV h–1 for purifying hydrogen from syngas for 100 h at 200 °C.</description><identifier>ISSN: 2380-8195</identifier><identifier>EISSN: 2380-8195</identifier><identifier>DOI: 10.1021/acsenergylett.1c02853</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Electrodes ; Hydrogen ; Mixtures ; Polarization ; Syngas</subject><ispartof>ACS energy letters, 2022-04, Vol.7 (4), p.1322-1329</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3503-47771358f0b65055ed09896e8bfe23ca3b69381b6c2e545b05cb862239bacc093</citedby><cites>FETCH-LOGICAL-a3503-47771358f0b65055ed09896e8bfe23ca3b69381b6c2e545b05cb862239bacc093</cites><orcidid>0000-0003-3682-1305 ; 0000-0002-9187-3143 ; 0000-0003-3684-4232 ; 0000-0002-7332-4300 ; 0000-0003-1703-8323 ; 0000000336844232 ; 0000000291873143 ; 0000000336821305 ; 0000000317038323 ; 0000000273324300</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsenergylett.1c02853$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsenergylett.1c02853$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1854607$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Venugopalan, Gokul</creatorcontrib><creatorcontrib>Bhattacharya, Deepra</creatorcontrib><creatorcontrib>Andrews, Evan</creatorcontrib><creatorcontrib>Briceno-Mena, Luis</creatorcontrib><creatorcontrib>Romagnoli, José</creatorcontrib><creatorcontrib>Flake, John</creatorcontrib><creatorcontrib>Arges, Christopher G</creatorcontrib><creatorcontrib>Louisiana State Univ., Baton Rouge, LA (United States)</creatorcontrib><title>Electrochemical Pumping for Challenging Hydrogen Separations</title><title>ACS energy letters</title><addtitle>ACS Energy Lett</addtitle><description>Conventional hydrogen separations from reformed hydrocarbons often deploy a water gas shift (WGS) reactor to convert CO to CO2, followed by adsorption processes to achieve pure hydrogen. The purified hydrogen is then fed to a compressor to deliver hydrogen at high pressures. Electrochemical hydrogen pumps (EHPs) featuring proton-selective polymer electrolyte membranes (PEMs) represent an alternative separation platform with fewer unit operations because they can simultaneously separate and compress hydrogen continuously. In this work, a high-temperature PEM (HT-PEM) EHP purified hydrogen to 99.3%, with greater than 85% hydrogen recovery for feed mixtures containing 25–40% CO. The ion-pair HT-PEM and phosphonic acid ionomer binder enabled the EHP to be operated in the temperature range from 160 to 220 °C. The ability to operate the EHP at an elevated temperature allowed the EHP to purify hydrogen from gas feeds with large CO contents at 1 A cm–2. Finally, the EHP with the said materials displayed a small performance loss of 12 μV h–1 for purifying hydrogen from syngas for 100 h at 200 °C.</description><subject>Electrodes</subject><subject>Hydrogen</subject><subject>Mixtures</subject><subject>Polarization</subject><subject>Syngas</subject><issn>2380-8195</issn><issn>2380-8195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkMFqwzAMhs3YYKXrIwzC7unkuHYc2GWUbh0UNth2NraqpCmpXez00LdfSnvYTkMHSej_hfQxds9hyqHgjxYTeYrNsaO-n3KEQktxxUaF0JBrXsnrX_Utm6S0BQCutBxixJ4WHWEfA25o16Ltso_Dbt_6JqtDzOYb23Xkm1O_PK5jaMhnn7S30fZt8OmO3dS2SzS55DH7fll8zZf56v31bf68yq2QIPJZWZZcSF2DUxKkpDVUulKkXU2FQCucqoTmTmFBciYdSHRaFYWonEWESozZw3lvSH1rErY94QaD98Pphms5U1AOInkWYQwpRarNPrY7G4-GgzmhMn9QmQuqwcfPvmFstuEQ_fDKP54fLndxDg</recordid><startdate>20220408</startdate><enddate>20220408</enddate><creator>Venugopalan, Gokul</creator><creator>Bhattacharya, Deepra</creator><creator>Andrews, Evan</creator><creator>Briceno-Mena, Luis</creator><creator>Romagnoli, José</creator><creator>Flake, John</creator><creator>Arges, Christopher G</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3682-1305</orcidid><orcidid>https://orcid.org/0000-0002-9187-3143</orcidid><orcidid>https://orcid.org/0000-0003-3684-4232</orcidid><orcidid>https://orcid.org/0000-0002-7332-4300</orcidid><orcidid>https://orcid.org/0000-0003-1703-8323</orcidid><orcidid>https://orcid.org/0000000336844232</orcidid><orcidid>https://orcid.org/0000000291873143</orcidid><orcidid>https://orcid.org/0000000336821305</orcidid><orcidid>https://orcid.org/0000000317038323</orcidid><orcidid>https://orcid.org/0000000273324300</orcidid></search><sort><creationdate>20220408</creationdate><title>Electrochemical Pumping for Challenging Hydrogen Separations</title><author>Venugopalan, Gokul ; Bhattacharya, Deepra ; Andrews, Evan ; Briceno-Mena, Luis ; Romagnoli, José ; Flake, John ; Arges, Christopher G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3503-47771358f0b65055ed09896e8bfe23ca3b69381b6c2e545b05cb862239bacc093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Electrodes</topic><topic>Hydrogen</topic><topic>Mixtures</topic><topic>Polarization</topic><topic>Syngas</topic><toplevel>online_resources</toplevel><creatorcontrib>Venugopalan, Gokul</creatorcontrib><creatorcontrib>Bhattacharya, Deepra</creatorcontrib><creatorcontrib>Andrews, Evan</creatorcontrib><creatorcontrib>Briceno-Mena, Luis</creatorcontrib><creatorcontrib>Romagnoli, José</creatorcontrib><creatorcontrib>Flake, John</creatorcontrib><creatorcontrib>Arges, Christopher G</creatorcontrib><creatorcontrib>Louisiana State Univ., Baton Rouge, LA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>ACS energy letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Venugopalan, Gokul</au><au>Bhattacharya, Deepra</au><au>Andrews, Evan</au><au>Briceno-Mena, Luis</au><au>Romagnoli, José</au><au>Flake, John</au><au>Arges, Christopher G</au><aucorp>Louisiana State Univ., Baton Rouge, LA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical Pumping for Challenging Hydrogen Separations</atitle><jtitle>ACS energy letters</jtitle><addtitle>ACS Energy Lett</addtitle><date>2022-04-08</date><risdate>2022</risdate><volume>7</volume><issue>4</issue><spage>1322</spage><epage>1329</epage><pages>1322-1329</pages><issn>2380-8195</issn><eissn>2380-8195</eissn><abstract>Conventional hydrogen separations from reformed hydrocarbons often deploy a water gas shift (WGS) reactor to convert CO to CO2, followed by adsorption processes to achieve pure hydrogen. The purified hydrogen is then fed to a compressor to deliver hydrogen at high pressures. Electrochemical hydrogen pumps (EHPs) featuring proton-selective polymer electrolyte membranes (PEMs) represent an alternative separation platform with fewer unit operations because they can simultaneously separate and compress hydrogen continuously. In this work, a high-temperature PEM (HT-PEM) EHP purified hydrogen to 99.3%, with greater than 85% hydrogen recovery for feed mixtures containing 25–40% CO. The ion-pair HT-PEM and phosphonic acid ionomer binder enabled the EHP to be operated in the temperature range from 160 to 220 °C. The ability to operate the EHP at an elevated temperature allowed the EHP to purify hydrogen from gas feeds with large CO contents at 1 A cm–2. Finally, the EHP with the said materials displayed a small performance loss of 12 μV h–1 for purifying hydrogen from syngas for 100 h at 200 °C.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acsenergylett.1c02853</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3682-1305</orcidid><orcidid>https://orcid.org/0000-0002-9187-3143</orcidid><orcidid>https://orcid.org/0000-0003-3684-4232</orcidid><orcidid>https://orcid.org/0000-0002-7332-4300</orcidid><orcidid>https://orcid.org/0000-0003-1703-8323</orcidid><orcidid>https://orcid.org/0000000336844232</orcidid><orcidid>https://orcid.org/0000000291873143</orcidid><orcidid>https://orcid.org/0000000336821305</orcidid><orcidid>https://orcid.org/0000000317038323</orcidid><orcidid>https://orcid.org/0000000273324300</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2380-8195 |
ispartof | ACS energy letters, 2022-04, Vol.7 (4), p.1322-1329 |
issn | 2380-8195 2380-8195 |
language | eng |
recordid | cdi_osti_scitechconnect_1854607 |
source | American Chemical Society Journals |
subjects | Electrodes Hydrogen Mixtures Polarization Syngas |
title | Electrochemical Pumping for Challenging Hydrogen Separations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A54%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20Pumping%20for%20Challenging%20Hydrogen%20Separations&rft.jtitle=ACS%20energy%20letters&rft.au=Venugopalan,%20Gokul&rft.aucorp=Louisiana%20State%20Univ.,%20Baton%20Rouge,%20LA%20(United%20States)&rft.date=2022-04-08&rft.volume=7&rft.issue=4&rft.spage=1322&rft.epage=1329&rft.pages=1322-1329&rft.issn=2380-8195&rft.eissn=2380-8195&rft_id=info:doi/10.1021/acsenergylett.1c02853&rft_dat=%3Cacs_osti_%3Eb111614098%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |