Fractional Laplacian spectral approach to turbulence in a dusty plasma monolayer
This work presents an analytical investigation of anomalous diffusion and turbulence in a dusty plasma monolayer, where energy transport across scales leads to the spontaneous formation of spatially disordered patterns. Many-body simulations of 10,000-particle dusty plasma monolayers are used to dem...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2021-07, Vol.28 (7) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 28 |
creator | Kostadinova, E. G. Banka, R. Padgett, J. L. Liaw, C. D. Matthews, L. S. Hyde, T. W. |
description | This work presents an analytical investigation of anomalous diffusion and turbulence in a dusty plasma monolayer, where energy transport across scales leads to the spontaneous formation of spatially disordered patterns. Many-body simulations of 10,000-particle dusty plasma monolayers are used to demonstrate how the global dynamics depend on the statistical properties of the dust assembly for realistic laboratory conditions. We find that disorder due to variations in the dust size distribution and charge-driven nonlocal interactions resulting in anomalous dust diffusion are key factors for the onset of instabilities. The resulting dynamics exhibit features of inertial turbulence over slightly more than half a decade of scales proportional or smaller than the Debye shielding length. These processes are examined analytically using a recently developed Fractional Laplacian Spectral (FLS) technique, which identifies the active energy channels as a function of scale, disorder concentration, and features of the nonlocal-interactions. The predictions from the theoretical (spectral) analysis demonstrate agreement with the results from the many-body (kinetic) simulations, thus providing a powerful tool for the study of active turbulence. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1853760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1853760</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18537603</originalsourceid><addsrcrecordid>eNqNjb0KwjAUhYMo-PsOF_dCStukzmJxcHBwcCvXa6SRNAlJOvTtreADOJ3Dx_k4M7bKeX3IpJDl_Nslz4Qo70u2jvHNOS9FVa_YtQlISTuLBi7oDZJGC9ErSmFC6H1wSB0kB2kIj8EoSwq0BYTnENMIkxJ7hN5ZZ3BUYcsWLzRR7X65YfvmdDueMxeTbiPppKgjZ-300OZ1VUjBi79GH1XUQOs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fractional Laplacian spectral approach to turbulence in a dusty plasma monolayer</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Kostadinova, E. G. ; Banka, R. ; Padgett, J. L. ; Liaw, C. D. ; Matthews, L. S. ; Hyde, T. W.</creator><creatorcontrib>Kostadinova, E. G. ; Banka, R. ; Padgett, J. L. ; Liaw, C. D. ; Matthews, L. S. ; Hyde, T. W. ; Baylor Univ., Waco, TX (United States)</creatorcontrib><description>This work presents an analytical investigation of anomalous diffusion and turbulence in a dusty plasma monolayer, where energy transport across scales leads to the spontaneous formation of spatially disordered patterns. Many-body simulations of 10,000-particle dusty plasma monolayers are used to demonstrate how the global dynamics depend on the statistical properties of the dust assembly for realistic laboratory conditions. We find that disorder due to variations in the dust size distribution and charge-driven nonlocal interactions resulting in anomalous dust diffusion are key factors for the onset of instabilities. The resulting dynamics exhibit features of inertial turbulence over slightly more than half a decade of scales proportional or smaller than the Debye shielding length. These processes are examined analytically using a recently developed Fractional Laplacian Spectral (FLS) technique, which identifies the active energy channels as a function of scale, disorder concentration, and features of the nonlocal-interactions. The predictions from the theoretical (spectral) analysis demonstrate agreement with the results from the many-body (kinetic) simulations, thus providing a powerful tool for the study of active turbulence.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><language>eng</language><publisher>United States: American Institute of Physics (AIP)</publisher><subject>active turbulence ; anomalous diffusion ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; complex (dusty) plasma ; energy production, transmission and distribution ; fluid flows ; fractional calculus ; fractional Laplacian ; numerical linear algebra ; operator theory ; plasmas ; probability theory ; spectral approach ; stochastic processes</subject><ispartof>Physics of plasmas, 2021-07, Vol.28 (7)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000273066794 ; 000000019369351X ; 000000018816332X ; 0000000286032737 ; 0000000317812868</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1853760$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kostadinova, E. G.</creatorcontrib><creatorcontrib>Banka, R.</creatorcontrib><creatorcontrib>Padgett, J. L.</creatorcontrib><creatorcontrib>Liaw, C. D.</creatorcontrib><creatorcontrib>Matthews, L. S.</creatorcontrib><creatorcontrib>Hyde, T. W.</creatorcontrib><creatorcontrib>Baylor Univ., Waco, TX (United States)</creatorcontrib><title>Fractional Laplacian spectral approach to turbulence in a dusty plasma monolayer</title><title>Physics of plasmas</title><description>This work presents an analytical investigation of anomalous diffusion and turbulence in a dusty plasma monolayer, where energy transport across scales leads to the spontaneous formation of spatially disordered patterns. Many-body simulations of 10,000-particle dusty plasma monolayers are used to demonstrate how the global dynamics depend on the statistical properties of the dust assembly for realistic laboratory conditions. We find that disorder due to variations in the dust size distribution and charge-driven nonlocal interactions resulting in anomalous dust diffusion are key factors for the onset of instabilities. The resulting dynamics exhibit features of inertial turbulence over slightly more than half a decade of scales proportional or smaller than the Debye shielding length. These processes are examined analytically using a recently developed Fractional Laplacian Spectral (FLS) technique, which identifies the active energy channels as a function of scale, disorder concentration, and features of the nonlocal-interactions. The predictions from the theoretical (spectral) analysis demonstrate agreement with the results from the many-body (kinetic) simulations, thus providing a powerful tool for the study of active turbulence.</description><subject>active turbulence</subject><subject>anomalous diffusion</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>complex (dusty) plasma</subject><subject>energy production, transmission and distribution</subject><subject>fluid flows</subject><subject>fractional calculus</subject><subject>fractional Laplacian</subject><subject>numerical linear algebra</subject><subject>operator theory</subject><subject>plasmas</subject><subject>probability theory</subject><subject>spectral approach</subject><subject>stochastic processes</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNjb0KwjAUhYMo-PsOF_dCStukzmJxcHBwcCvXa6SRNAlJOvTtreADOJ3Dx_k4M7bKeX3IpJDl_Nslz4Qo70u2jvHNOS9FVa_YtQlISTuLBi7oDZJGC9ErSmFC6H1wSB0kB2kIj8EoSwq0BYTnENMIkxJ7hN5ZZ3BUYcsWLzRR7X65YfvmdDueMxeTbiPppKgjZ-300OZ1VUjBi79GH1XUQOs</recordid><startdate>20210721</startdate><enddate>20210721</enddate><creator>Kostadinova, E. G.</creator><creator>Banka, R.</creator><creator>Padgett, J. L.</creator><creator>Liaw, C. D.</creator><creator>Matthews, L. S.</creator><creator>Hyde, T. W.</creator><general>American Institute of Physics (AIP)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000273066794</orcidid><orcidid>https://orcid.org/000000019369351X</orcidid><orcidid>https://orcid.org/000000018816332X</orcidid><orcidid>https://orcid.org/0000000286032737</orcidid><orcidid>https://orcid.org/0000000317812868</orcidid></search><sort><creationdate>20210721</creationdate><title>Fractional Laplacian spectral approach to turbulence in a dusty plasma monolayer</title><author>Kostadinova, E. G. ; Banka, R. ; Padgett, J. L. ; Liaw, C. D. ; Matthews, L. S. ; Hyde, T. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18537603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>active turbulence</topic><topic>anomalous diffusion</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>complex (dusty) plasma</topic><topic>energy production, transmission and distribution</topic><topic>fluid flows</topic><topic>fractional calculus</topic><topic>fractional Laplacian</topic><topic>numerical linear algebra</topic><topic>operator theory</topic><topic>plasmas</topic><topic>probability theory</topic><topic>spectral approach</topic><topic>stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kostadinova, E. G.</creatorcontrib><creatorcontrib>Banka, R.</creatorcontrib><creatorcontrib>Padgett, J. L.</creatorcontrib><creatorcontrib>Liaw, C. D.</creatorcontrib><creatorcontrib>Matthews, L. S.</creatorcontrib><creatorcontrib>Hyde, T. W.</creatorcontrib><creatorcontrib>Baylor Univ., Waco, TX (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kostadinova, E. G.</au><au>Banka, R.</au><au>Padgett, J. L.</au><au>Liaw, C. D.</au><au>Matthews, L. S.</au><au>Hyde, T. W.</au><aucorp>Baylor Univ., Waco, TX (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractional Laplacian spectral approach to turbulence in a dusty plasma monolayer</atitle><jtitle>Physics of plasmas</jtitle><date>2021-07-21</date><risdate>2021</risdate><volume>28</volume><issue>7</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><abstract>This work presents an analytical investigation of anomalous diffusion and turbulence in a dusty plasma monolayer, where energy transport across scales leads to the spontaneous formation of spatially disordered patterns. Many-body simulations of 10,000-particle dusty plasma monolayers are used to demonstrate how the global dynamics depend on the statistical properties of the dust assembly for realistic laboratory conditions. We find that disorder due to variations in the dust size distribution and charge-driven nonlocal interactions resulting in anomalous dust diffusion are key factors for the onset of instabilities. The resulting dynamics exhibit features of inertial turbulence over slightly more than half a decade of scales proportional or smaller than the Debye shielding length. These processes are examined analytically using a recently developed Fractional Laplacian Spectral (FLS) technique, which identifies the active energy channels as a function of scale, disorder concentration, and features of the nonlocal-interactions. The predictions from the theoretical (spectral) analysis demonstrate agreement with the results from the many-body (kinetic) simulations, thus providing a powerful tool for the study of active turbulence.</abstract><cop>United States</cop><pub>American Institute of Physics (AIP)</pub><orcidid>https://orcid.org/0000000273066794</orcidid><orcidid>https://orcid.org/000000019369351X</orcidid><orcidid>https://orcid.org/000000018816332X</orcidid><orcidid>https://orcid.org/0000000286032737</orcidid><orcidid>https://orcid.org/0000000317812868</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2021-07, Vol.28 (7) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_osti_scitechconnect_1853760 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | active turbulence anomalous diffusion CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS complex (dusty) plasma energy production, transmission and distribution fluid flows fractional calculus fractional Laplacian numerical linear algebra operator theory plasmas probability theory spectral approach stochastic processes |
title | Fractional Laplacian spectral approach to turbulence in a dusty plasma monolayer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A32%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractional%20Laplacian%20spectral%20approach%20to%20turbulence%20in%20a%20dusty%20plasma%20monolayer&rft.jtitle=Physics%20of%20plasmas&rft.au=Kostadinova,%20E.%20G.&rft.aucorp=Baylor%20Univ.,%20Waco,%20TX%20(United%20States)&rft.date=2021-07-21&rft.volume=28&rft.issue=7&rft.issn=1070-664X&rft.eissn=1089-7674&rft_id=info:doi/&rft_dat=%3Costi%3E1853760%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |