Discrete Time-Crystalline Order Enabled by Quantum Many-Body Scars: Entanglement Steering via Periodic Driving
The control of many-body quantum dynamics in complex systems is a key challenge in the quest to reliably produce and manipulate large-scale quantum entangled states. Recently, quench experiments in Rydberg atom arrays [Bluvstein et al. Science 371, 1355 (2021)] demonstrated that coherent revivals as...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2021-08, Vol.127 (9), p.090602-090602, Article 090602 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 090602 |
---|---|
container_issue | 9 |
container_start_page | 090602 |
container_title | Physical review letters |
container_volume | 127 |
creator | Maskara, N. Michailidis, A. A. Ho, W. W. Bluvstein, D. Choi, S. Lukin, M. D. Serbyn, M. |
description | The control of many-body quantum dynamics in complex systems is a key challenge in the quest to reliably produce and manipulate large-scale quantum entangled states. Recently, quench experiments in Rydberg atom arrays [Bluvstein et al. Science 371, 1355 (2021)] demonstrated that coherent revivals associated with quantum many-body scars can be stabilized by periodic driving, generating stable subharmonic responses over a wide parameter regime. We analyze a simple, related model where these phenomena originate from spatiotemporal ordering in an effective Floquet unitary, corresponding to discrete time-crystalline behavior in a prethermal regime. Unlike conventional discrete time crystals, the subharmonic response exists only for Néel-like initial states, associated with quantum scars. We predict robustness to perturbations and identify emergent timescales that could be observed in future experiments. Our results suggest a route to controlling entanglement in interacting quantum systems by combining periodic driving with many-body scars. |
doi_str_mv | 10.1103/PhysRevLett.127.090602 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1853702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2569411096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-81b98992ed1b44d84fb92cf81448478e5e16a15f3887099955a1848fe830f243</originalsourceid><addsrcrecordid>eNpd0U1r3DAQgGFRGug2yV8oor304o1Glm2pt2aTNoUN-dq7kOVxomDLqSQv-N9HYXMoPUmIB8HMS8gXYGsAVp7dPi3xHvdbTGkNvFkzxWrGP5AVsEYVDYD4SFaMlVAoxppP5HOMz4wx4LVcEX_hog2YkO7ciMUmLDGZYXAe6U3oMNBLb9oBO9ou9G42Ps0jvTZ-Kc6nbqEP1oT4I5tk_OOAI_pEHxJicP6R7p2ht_k6dc7Si-D2-fGEHPVmiHj6fh6T3a_L3eaq2N78_rP5uS1sqSAVElolleLYQStEJ0XfKm57CUJI0UisEGoDVV9K2TClVFUZkEL2KEvWc1Eek6-Hb6eYnI7WJbRPdvIebdIgq7JhPKPvB_QSpr8zxqTHvAscBuNxmqPmVQOKy1rUmX77jz5Pc_B5gqxqJXIH9abqg7JhijFgr1-CG01YNDD9lkr_k0rnVPqQqnwFEtmI7w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569411096</pqid></control><display><type>article</type><title>Discrete Time-Crystalline Order Enabled by Quantum Many-Body Scars: Entanglement Steering via Periodic Driving</title><source>American Physical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Maskara, N. ; Michailidis, A. A. ; Ho, W. W. ; Bluvstein, D. ; Choi, S. ; Lukin, M. D. ; Serbyn, M.</creator><creatorcontrib>Maskara, N. ; Michailidis, A. A. ; Ho, W. W. ; Bluvstein, D. ; Choi, S. ; Lukin, M. D. ; Serbyn, M. ; Krell Institute, Ames, IA (United States) ; Harvard Univ., Cambridge, MA (United States)</creatorcontrib><description>The control of many-body quantum dynamics in complex systems is a key challenge in the quest to reliably produce and manipulate large-scale quantum entangled states. Recently, quench experiments in Rydberg atom arrays [Bluvstein et al. Science 371, 1355 (2021)] demonstrated that coherent revivals associated with quantum many-body scars can be stabilized by periodic driving, generating stable subharmonic responses over a wide parameter regime. We analyze a simple, related model where these phenomena originate from spatiotemporal ordering in an effective Floquet unitary, corresponding to discrete time-crystalline behavior in a prethermal regime. Unlike conventional discrete time crystals, the subharmonic response exists only for Néel-like initial states, associated with quantum scars. We predict robustness to perturbations and identify emergent timescales that could be observed in future experiments. Our results suggest a route to controlling entanglement in interacting quantum systems by combining periodic driving with many-body scars.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.127.090602</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Complex systems ; Crystal structure ; Crystallinity ; Eigenstate thermalization ; Entangled states ; Entanglement ; Entanglement in quantum gases ; Floquet systems ; Perturbation ; Physics ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; Quantum quench ; Quantum scars ; Quantum simulation ; Scars ; Spontaneous symmetry breaking ; Steering</subject><ispartof>Physical review letters, 2021-08, Vol.127 (9), p.090602-090602, Article 090602</ispartof><rights>Copyright American Physical Society Aug 27, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-81b98992ed1b44d84fb92cf81448478e5e16a15f3887099955a1848fe830f243</citedby><cites>FETCH-LOGICAL-c391t-81b98992ed1b44d84fb92cf81448478e5e16a15f3887099955a1848fe830f243</cites><orcidid>0000-0001-5775-9542 ; 0000-0002-1247-062X ; 0000-0002-8443-1064 ; 0000-0002-2399-5827 ; 0000-0001-7702-2900 ; 0000000157759542 ; 000000021247062X ; 0000000177022900 ; 0000000223995827 ; 0000000284431064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2874,2875,27922,27923</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1853702$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Maskara, N.</creatorcontrib><creatorcontrib>Michailidis, A. A.</creatorcontrib><creatorcontrib>Ho, W. W.</creatorcontrib><creatorcontrib>Bluvstein, D.</creatorcontrib><creatorcontrib>Choi, S.</creatorcontrib><creatorcontrib>Lukin, M. D.</creatorcontrib><creatorcontrib>Serbyn, M.</creatorcontrib><creatorcontrib>Krell Institute, Ames, IA (United States)</creatorcontrib><creatorcontrib>Harvard Univ., Cambridge, MA (United States)</creatorcontrib><title>Discrete Time-Crystalline Order Enabled by Quantum Many-Body Scars: Entanglement Steering via Periodic Driving</title><title>Physical review letters</title><description>The control of many-body quantum dynamics in complex systems is a key challenge in the quest to reliably produce and manipulate large-scale quantum entangled states. Recently, quench experiments in Rydberg atom arrays [Bluvstein et al. Science 371, 1355 (2021)] demonstrated that coherent revivals associated with quantum many-body scars can be stabilized by periodic driving, generating stable subharmonic responses over a wide parameter regime. We analyze a simple, related model where these phenomena originate from spatiotemporal ordering in an effective Floquet unitary, corresponding to discrete time-crystalline behavior in a prethermal regime. Unlike conventional discrete time crystals, the subharmonic response exists only for Néel-like initial states, associated with quantum scars. We predict robustness to perturbations and identify emergent timescales that could be observed in future experiments. Our results suggest a route to controlling entanglement in interacting quantum systems by combining periodic driving with many-body scars.</description><subject>Complex systems</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Eigenstate thermalization</subject><subject>Entangled states</subject><subject>Entanglement</subject><subject>Entanglement in quantum gases</subject><subject>Floquet systems</subject><subject>Perturbation</subject><subject>Physics</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>Quantum quench</subject><subject>Quantum scars</subject><subject>Quantum simulation</subject><subject>Scars</subject><subject>Spontaneous symmetry breaking</subject><subject>Steering</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0U1r3DAQgGFRGug2yV8oor304o1Glm2pt2aTNoUN-dq7kOVxomDLqSQv-N9HYXMoPUmIB8HMS8gXYGsAVp7dPi3xHvdbTGkNvFkzxWrGP5AVsEYVDYD4SFaMlVAoxppP5HOMz4wx4LVcEX_hog2YkO7ciMUmLDGZYXAe6U3oMNBLb9oBO9ou9G42Ps0jvTZ-Kc6nbqEP1oT4I5tk_OOAI_pEHxJicP6R7p2ht_k6dc7Si-D2-fGEHPVmiHj6fh6T3a_L3eaq2N78_rP5uS1sqSAVElolleLYQStEJ0XfKm57CUJI0UisEGoDVV9K2TClVFUZkEL2KEvWc1Eek6-Hb6eYnI7WJbRPdvIebdIgq7JhPKPvB_QSpr8zxqTHvAscBuNxmqPmVQOKy1rUmX77jz5Pc_B5gqxqJXIH9abqg7JhijFgr1-CG01YNDD9lkr_k0rnVPqQqnwFEtmI7w</recordid><startdate>20210827</startdate><enddate>20210827</enddate><creator>Maskara, N.</creator><creator>Michailidis, A. A.</creator><creator>Ho, W. W.</creator><creator>Bluvstein, D.</creator><creator>Choi, S.</creator><creator>Lukin, M. D.</creator><creator>Serbyn, M.</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5775-9542</orcidid><orcidid>https://orcid.org/0000-0002-1247-062X</orcidid><orcidid>https://orcid.org/0000-0002-8443-1064</orcidid><orcidid>https://orcid.org/0000-0002-2399-5827</orcidid><orcidid>https://orcid.org/0000-0001-7702-2900</orcidid><orcidid>https://orcid.org/0000000157759542</orcidid><orcidid>https://orcid.org/000000021247062X</orcidid><orcidid>https://orcid.org/0000000177022900</orcidid><orcidid>https://orcid.org/0000000223995827</orcidid><orcidid>https://orcid.org/0000000284431064</orcidid></search><sort><creationdate>20210827</creationdate><title>Discrete Time-Crystalline Order Enabled by Quantum Many-Body Scars: Entanglement Steering via Periodic Driving</title><author>Maskara, N. ; Michailidis, A. A. ; Ho, W. W. ; Bluvstein, D. ; Choi, S. ; Lukin, M. D. ; Serbyn, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-81b98992ed1b44d84fb92cf81448478e5e16a15f3887099955a1848fe830f243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Complex systems</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Eigenstate thermalization</topic><topic>Entangled states</topic><topic>Entanglement</topic><topic>Entanglement in quantum gases</topic><topic>Floquet systems</topic><topic>Perturbation</topic><topic>Physics</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>Quantum quench</topic><topic>Quantum scars</topic><topic>Quantum simulation</topic><topic>Scars</topic><topic>Spontaneous symmetry breaking</topic><topic>Steering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maskara, N.</creatorcontrib><creatorcontrib>Michailidis, A. A.</creatorcontrib><creatorcontrib>Ho, W. W.</creatorcontrib><creatorcontrib>Bluvstein, D.</creatorcontrib><creatorcontrib>Choi, S.</creatorcontrib><creatorcontrib>Lukin, M. D.</creatorcontrib><creatorcontrib>Serbyn, M.</creatorcontrib><creatorcontrib>Krell Institute, Ames, IA (United States)</creatorcontrib><creatorcontrib>Harvard Univ., Cambridge, MA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maskara, N.</au><au>Michailidis, A. A.</au><au>Ho, W. W.</au><au>Bluvstein, D.</au><au>Choi, S.</au><au>Lukin, M. D.</au><au>Serbyn, M.</au><aucorp>Krell Institute, Ames, IA (United States)</aucorp><aucorp>Harvard Univ., Cambridge, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete Time-Crystalline Order Enabled by Quantum Many-Body Scars: Entanglement Steering via Periodic Driving</atitle><jtitle>Physical review letters</jtitle><date>2021-08-27</date><risdate>2021</risdate><volume>127</volume><issue>9</issue><spage>090602</spage><epage>090602</epage><pages>090602-090602</pages><artnum>090602</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The control of many-body quantum dynamics in complex systems is a key challenge in the quest to reliably produce and manipulate large-scale quantum entangled states. Recently, quench experiments in Rydberg atom arrays [Bluvstein et al. Science 371, 1355 (2021)] demonstrated that coherent revivals associated with quantum many-body scars can be stabilized by periodic driving, generating stable subharmonic responses over a wide parameter regime. We analyze a simple, related model where these phenomena originate from spatiotemporal ordering in an effective Floquet unitary, corresponding to discrete time-crystalline behavior in a prethermal regime. Unlike conventional discrete time crystals, the subharmonic response exists only for Néel-like initial states, associated with quantum scars. We predict robustness to perturbations and identify emergent timescales that could be observed in future experiments. Our results suggest a route to controlling entanglement in interacting quantum systems by combining periodic driving with many-body scars.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevLett.127.090602</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5775-9542</orcidid><orcidid>https://orcid.org/0000-0002-1247-062X</orcidid><orcidid>https://orcid.org/0000-0002-8443-1064</orcidid><orcidid>https://orcid.org/0000-0002-2399-5827</orcidid><orcidid>https://orcid.org/0000-0001-7702-2900</orcidid><orcidid>https://orcid.org/0000000157759542</orcidid><orcidid>https://orcid.org/000000021247062X</orcidid><orcidid>https://orcid.org/0000000177022900</orcidid><orcidid>https://orcid.org/0000000223995827</orcidid><orcidid>https://orcid.org/0000000284431064</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2021-08, Vol.127 (9), p.090602-090602, Article 090602 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_osti_scitechconnect_1853702 |
source | American Physical Society Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Complex systems Crystal structure Crystallinity Eigenstate thermalization Entangled states Entanglement Entanglement in quantum gases Floquet systems Perturbation Physics PHYSICS OF ELEMENTARY PARTICLES AND FIELDS Quantum quench Quantum scars Quantum simulation Scars Spontaneous symmetry breaking Steering |
title | Discrete Time-Crystalline Order Enabled by Quantum Many-Body Scars: Entanglement Steering via Periodic Driving |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A53%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20Time-Crystalline%20Order%20Enabled%20by%20Quantum%20Many-Body%20Scars:%20Entanglement%20Steering%20via%20Periodic%20Driving&rft.jtitle=Physical%20review%20letters&rft.au=Maskara,%20N.&rft.aucorp=Krell%20Institute,%20Ames,%20IA%20(United%20States)&rft.date=2021-08-27&rft.volume=127&rft.issue=9&rft.spage=090602&rft.epage=090602&rft.pages=090602-090602&rft.artnum=090602&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.127.090602&rft_dat=%3Cproquest_osti_%3E2569411096%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569411096&rft_id=info:pmid/&rfr_iscdi=true |