Unraveling Two Pathways for Electrochemical Alcohol and Aldehyde Oxidation on NiOOH

Selective oxidation of alcohols to their corresponding aldehyde or carboxylic acid is one of the most important classes of organic synthesis reactions. In addition, electrochemical alcohol oxidation is considered a viable anode reaction that can be paired with H2 evolution or other reductive fuel pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2020-12, Vol.142 (51), p.21538-21547
Hauptverfasser: Bender, Michael T, Lam, Yan Choi, Hammes-Schiffer, Sharon, Choi, Kyoung-Shin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21547
container_issue 51
container_start_page 21538
container_title Journal of the American Chemical Society
container_volume 142
creator Bender, Michael T
Lam, Yan Choi
Hammes-Schiffer, Sharon
Choi, Kyoung-Shin
description Selective oxidation of alcohols to their corresponding aldehyde or carboxylic acid is one of the most important classes of organic synthesis reactions. In addition, electrochemical alcohol oxidation is considered a viable anode reaction that can be paired with H2 evolution or other reductive fuel production reactions in electrochemical and photoelectrochemical cells. NiOOH, a material that has been extensively studied as an oxygen evolution catalyst, is among the most promising electrocatalysts for selective alcohol oxidation. Electrochemical alcohol oxidation by NiOOH has been understood since the 1970s to proceed through a hydrogen atom transfer to NiOOH. In this study, we establish that there is a second, more dominant general alcohol oxidation pathway on NiOOH enabled at more positive potentials. Using a three-step electrochemical procedure we developed, we deconvoluted the currents corresponding to these two pathways for various alcohols and aldehydes. The results show that alcohols and aldehydes have a distinct difference in their respective preferences for the two oxidation pathways. Our three-step electrochemical procedure also allowed us to evaluate the Ni valence involved with the different oxidation pathways to elucidate their mechanistic differences. Using these experimental results coupled with a computational investigation, we propose that the new pathway entails hydride transfer from the substrate to Ni4+ sites in NiOOH. This study offers an essential foundation to understand various oxidative electrochemical dehydrogenation reactions on oxide and hydroxide-based catalytic electrodes.
doi_str_mv 10.1021/jacs.0c10924
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1853692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2470627237</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-b2476c9dca514b7114e57b9c12fbea88716feb6e29e2e76d5a3881cb36352aa53</originalsourceid><addsrcrecordid>eNptkEtLxDAURoMoOo7uXEtx5cJqHk3aLmUYHyBWcFyHNL21GdpGk1adf2-GGXUjXMgNnHz5OAidEHxJMCVXS6X9JdYE5zTZQRPCKY45oWIXTTDGNE4zwQ7QoffLcE1oRvbRAWOMYsGTCXp-6Z36gNb0r9Hi00ZPamg-1cpHtXXRvAU9OKsb6IxWbXTdatvYNlJ9FfYKmlUFUfFlKjUY20dhHk1R3B2hvVq1Ho635xS93MwXs7v4obi9n10_xIpxMsQlTVKh80orTpIyJSQBnpa5JrQuQWVZSkQNpQCaA4VUVFyxLCO6ZIJxqhRnU3S2ybV-MNJrM4ButO370FqSjDOR0wCdb6A3Z99H8IPsjNfQtqoHO3oZSmBBU8rSgF5sUO2s9w5q-eZMp9xKEizXruXatdy6DvjpNnksO6h-4R-5f1-vXy3t6Ppg4_-sbw0Ohl4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470627237</pqid></control><display><type>article</type><title>Unraveling Two Pathways for Electrochemical Alcohol and Aldehyde Oxidation on NiOOH</title><source>ACS Publications</source><creator>Bender, Michael T ; Lam, Yan Choi ; Hammes-Schiffer, Sharon ; Choi, Kyoung-Shin</creator><creatorcontrib>Bender, Michael T ; Lam, Yan Choi ; Hammes-Schiffer, Sharon ; Choi, Kyoung-Shin ; Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><description>Selective oxidation of alcohols to their corresponding aldehyde or carboxylic acid is one of the most important classes of organic synthesis reactions. In addition, electrochemical alcohol oxidation is considered a viable anode reaction that can be paired with H2 evolution or other reductive fuel production reactions in electrochemical and photoelectrochemical cells. NiOOH, a material that has been extensively studied as an oxygen evolution catalyst, is among the most promising electrocatalysts for selective alcohol oxidation. Electrochemical alcohol oxidation by NiOOH has been understood since the 1970s to proceed through a hydrogen atom transfer to NiOOH. In this study, we establish that there is a second, more dominant general alcohol oxidation pathway on NiOOH enabled at more positive potentials. Using a three-step electrochemical procedure we developed, we deconvoluted the currents corresponding to these two pathways for various alcohols and aldehydes. The results show that alcohols and aldehydes have a distinct difference in their respective preferences for the two oxidation pathways. Our three-step electrochemical procedure also allowed us to evaluate the Ni valence involved with the different oxidation pathways to elucidate their mechanistic differences. Using these experimental results coupled with a computational investigation, we propose that the new pathway entails hydride transfer from the substrate to Ni4+ sites in NiOOH. This study offers an essential foundation to understand various oxidative electrochemical dehydrogenation reactions on oxide and hydroxide-based catalytic electrodes.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.0c10924</identifier><identifier>PMID: 33320654</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemistry</subject><ispartof>Journal of the American Chemical Society, 2020-12, Vol.142 (51), p.21538-21547</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-b2476c9dca514b7114e57b9c12fbea88716feb6e29e2e76d5a3881cb36352aa53</citedby><cites>FETCH-LOGICAL-a351t-b2476c9dca514b7114e57b9c12fbea88716feb6e29e2e76d5a3881cb36352aa53</cites><orcidid>0000-0003-1945-8794 ; 0000-0002-3782-6995 ; 0000000319458794 ; 0000000237826995</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.0c10924$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.0c10924$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33320654$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1853692$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bender, Michael T</creatorcontrib><creatorcontrib>Lam, Yan Choi</creatorcontrib><creatorcontrib>Hammes-Schiffer, Sharon</creatorcontrib><creatorcontrib>Choi, Kyoung-Shin</creatorcontrib><creatorcontrib>Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><title>Unraveling Two Pathways for Electrochemical Alcohol and Aldehyde Oxidation on NiOOH</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Selective oxidation of alcohols to their corresponding aldehyde or carboxylic acid is one of the most important classes of organic synthesis reactions. In addition, electrochemical alcohol oxidation is considered a viable anode reaction that can be paired with H2 evolution or other reductive fuel production reactions in electrochemical and photoelectrochemical cells. NiOOH, a material that has been extensively studied as an oxygen evolution catalyst, is among the most promising electrocatalysts for selective alcohol oxidation. Electrochemical alcohol oxidation by NiOOH has been understood since the 1970s to proceed through a hydrogen atom transfer to NiOOH. In this study, we establish that there is a second, more dominant general alcohol oxidation pathway on NiOOH enabled at more positive potentials. Using a three-step electrochemical procedure we developed, we deconvoluted the currents corresponding to these two pathways for various alcohols and aldehydes. The results show that alcohols and aldehydes have a distinct difference in their respective preferences for the two oxidation pathways. Our three-step electrochemical procedure also allowed us to evaluate the Ni valence involved with the different oxidation pathways to elucidate their mechanistic differences. Using these experimental results coupled with a computational investigation, we propose that the new pathway entails hydride transfer from the substrate to Ni4+ sites in NiOOH. This study offers an essential foundation to understand various oxidative electrochemical dehydrogenation reactions on oxide and hydroxide-based catalytic electrodes.</description><subject>Chemistry</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNptkEtLxDAURoMoOo7uXEtx5cJqHk3aLmUYHyBWcFyHNL21GdpGk1adf2-GGXUjXMgNnHz5OAidEHxJMCVXS6X9JdYE5zTZQRPCKY45oWIXTTDGNE4zwQ7QoffLcE1oRvbRAWOMYsGTCXp-6Z36gNb0r9Hi00ZPamg-1cpHtXXRvAU9OKsb6IxWbXTdatvYNlJ9FfYKmlUFUfFlKjUY20dhHk1R3B2hvVq1Ho635xS93MwXs7v4obi9n10_xIpxMsQlTVKh80orTpIyJSQBnpa5JrQuQWVZSkQNpQCaA4VUVFyxLCO6ZIJxqhRnU3S2ybV-MNJrM4ButO370FqSjDOR0wCdb6A3Z99H8IPsjNfQtqoHO3oZSmBBU8rSgF5sUO2s9w5q-eZMp9xKEizXruXatdy6DvjpNnksO6h-4R-5f1-vXy3t6Ppg4_-sbw0Ohl4</recordid><startdate>20201223</startdate><enddate>20201223</enddate><creator>Bender, Michael T</creator><creator>Lam, Yan Choi</creator><creator>Hammes-Schiffer, Sharon</creator><creator>Choi, Kyoung-Shin</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1945-8794</orcidid><orcidid>https://orcid.org/0000-0002-3782-6995</orcidid><orcidid>https://orcid.org/0000000319458794</orcidid><orcidid>https://orcid.org/0000000237826995</orcidid></search><sort><creationdate>20201223</creationdate><title>Unraveling Two Pathways for Electrochemical Alcohol and Aldehyde Oxidation on NiOOH</title><author>Bender, Michael T ; Lam, Yan Choi ; Hammes-Schiffer, Sharon ; Choi, Kyoung-Shin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-b2476c9dca514b7114e57b9c12fbea88716feb6e29e2e76d5a3881cb36352aa53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bender, Michael T</creatorcontrib><creatorcontrib>Lam, Yan Choi</creatorcontrib><creatorcontrib>Hammes-Schiffer, Sharon</creatorcontrib><creatorcontrib>Choi, Kyoung-Shin</creatorcontrib><creatorcontrib>Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bender, Michael T</au><au>Lam, Yan Choi</au><au>Hammes-Schiffer, Sharon</au><au>Choi, Kyoung-Shin</au><aucorp>Univ. of Wisconsin, Madison, WI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unraveling Two Pathways for Electrochemical Alcohol and Aldehyde Oxidation on NiOOH</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2020-12-23</date><risdate>2020</risdate><volume>142</volume><issue>51</issue><spage>21538</spage><epage>21547</epage><pages>21538-21547</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Selective oxidation of alcohols to their corresponding aldehyde or carboxylic acid is one of the most important classes of organic synthesis reactions. In addition, electrochemical alcohol oxidation is considered a viable anode reaction that can be paired with H2 evolution or other reductive fuel production reactions in electrochemical and photoelectrochemical cells. NiOOH, a material that has been extensively studied as an oxygen evolution catalyst, is among the most promising electrocatalysts for selective alcohol oxidation. Electrochemical alcohol oxidation by NiOOH has been understood since the 1970s to proceed through a hydrogen atom transfer to NiOOH. In this study, we establish that there is a second, more dominant general alcohol oxidation pathway on NiOOH enabled at more positive potentials. Using a three-step electrochemical procedure we developed, we deconvoluted the currents corresponding to these two pathways for various alcohols and aldehydes. The results show that alcohols and aldehydes have a distinct difference in their respective preferences for the two oxidation pathways. Our three-step electrochemical procedure also allowed us to evaluate the Ni valence involved with the different oxidation pathways to elucidate their mechanistic differences. Using these experimental results coupled with a computational investigation, we propose that the new pathway entails hydride transfer from the substrate to Ni4+ sites in NiOOH. This study offers an essential foundation to understand various oxidative electrochemical dehydrogenation reactions on oxide and hydroxide-based catalytic electrodes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33320654</pmid><doi>10.1021/jacs.0c10924</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1945-8794</orcidid><orcidid>https://orcid.org/0000-0002-3782-6995</orcidid><orcidid>https://orcid.org/0000000319458794</orcidid><orcidid>https://orcid.org/0000000237826995</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2020-12, Vol.142 (51), p.21538-21547
issn 0002-7863
1520-5126
language eng
recordid cdi_osti_scitechconnect_1853692
source ACS Publications
subjects Chemistry
title Unraveling Two Pathways for Electrochemical Alcohol and Aldehyde Oxidation on NiOOH
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T16%3A08%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unraveling%20Two%20Pathways%20for%20Electrochemical%20Alcohol%20and%20Aldehyde%20Oxidation%20on%20NiOOH&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Bender,%20Michael%20T&rft.aucorp=Univ.%20of%20Wisconsin,%20Madison,%20WI%20(United%20States)&rft.date=2020-12-23&rft.volume=142&rft.issue=51&rft.spage=21538&rft.epage=21547&rft.pages=21538-21547&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.0c10924&rft_dat=%3Cproquest_osti_%3E2470627237%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2470627237&rft_id=info:pmid/33320654&rfr_iscdi=true