Unraveling Two Pathways for Electrochemical Alcohol and Aldehyde Oxidation on NiOOH
Selective oxidation of alcohols to their corresponding aldehyde or carboxylic acid is one of the most important classes of organic synthesis reactions. In addition, electrochemical alcohol oxidation is considered a viable anode reaction that can be paired with H2 evolution or other reductive fuel pr...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2020-12, Vol.142 (51), p.21538-21547 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21547 |
---|---|
container_issue | 51 |
container_start_page | 21538 |
container_title | Journal of the American Chemical Society |
container_volume | 142 |
creator | Bender, Michael T Lam, Yan Choi Hammes-Schiffer, Sharon Choi, Kyoung-Shin |
description | Selective oxidation of alcohols to their corresponding aldehyde or carboxylic acid is one of the most important classes of organic synthesis reactions. In addition, electrochemical alcohol oxidation is considered a viable anode reaction that can be paired with H2 evolution or other reductive fuel production reactions in electrochemical and photoelectrochemical cells. NiOOH, a material that has been extensively studied as an oxygen evolution catalyst, is among the most promising electrocatalysts for selective alcohol oxidation. Electrochemical alcohol oxidation by NiOOH has been understood since the 1970s to proceed through a hydrogen atom transfer to NiOOH. In this study, we establish that there is a second, more dominant general alcohol oxidation pathway on NiOOH enabled at more positive potentials. Using a three-step electrochemical procedure we developed, we deconvoluted the currents corresponding to these two pathways for various alcohols and aldehydes. The results show that alcohols and aldehydes have a distinct difference in their respective preferences for the two oxidation pathways. Our three-step electrochemical procedure also allowed us to evaluate the Ni valence involved with the different oxidation pathways to elucidate their mechanistic differences. Using these experimental results coupled with a computational investigation, we propose that the new pathway entails hydride transfer from the substrate to Ni4+ sites in NiOOH. This study offers an essential foundation to understand various oxidative electrochemical dehydrogenation reactions on oxide and hydroxide-based catalytic electrodes. |
doi_str_mv | 10.1021/jacs.0c10924 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1853692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2470627237</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-b2476c9dca514b7114e57b9c12fbea88716feb6e29e2e76d5a3881cb36352aa53</originalsourceid><addsrcrecordid>eNptkEtLxDAURoMoOo7uXEtx5cJqHk3aLmUYHyBWcFyHNL21GdpGk1adf2-GGXUjXMgNnHz5OAidEHxJMCVXS6X9JdYE5zTZQRPCKY45oWIXTTDGNE4zwQ7QoffLcE1oRvbRAWOMYsGTCXp-6Z36gNb0r9Hi00ZPamg-1cpHtXXRvAU9OKsb6IxWbXTdatvYNlJ9FfYKmlUFUfFlKjUY20dhHk1R3B2hvVq1Ho635xS93MwXs7v4obi9n10_xIpxMsQlTVKh80orTpIyJSQBnpa5JrQuQWVZSkQNpQCaA4VUVFyxLCO6ZIJxqhRnU3S2ybV-MNJrM4ButO370FqSjDOR0wCdb6A3Z99H8IPsjNfQtqoHO3oZSmBBU8rSgF5sUO2s9w5q-eZMp9xKEizXruXatdy6DvjpNnksO6h-4R-5f1-vXy3t6Ppg4_-sbw0Ohl4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470627237</pqid></control><display><type>article</type><title>Unraveling Two Pathways for Electrochemical Alcohol and Aldehyde Oxidation on NiOOH</title><source>ACS Publications</source><creator>Bender, Michael T ; Lam, Yan Choi ; Hammes-Schiffer, Sharon ; Choi, Kyoung-Shin</creator><creatorcontrib>Bender, Michael T ; Lam, Yan Choi ; Hammes-Schiffer, Sharon ; Choi, Kyoung-Shin ; Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><description>Selective oxidation of alcohols to their corresponding aldehyde or carboxylic acid is one of the most important classes of organic synthesis reactions. In addition, electrochemical alcohol oxidation is considered a viable anode reaction that can be paired with H2 evolution or other reductive fuel production reactions in electrochemical and photoelectrochemical cells. NiOOH, a material that has been extensively studied as an oxygen evolution catalyst, is among the most promising electrocatalysts for selective alcohol oxidation. Electrochemical alcohol oxidation by NiOOH has been understood since the 1970s to proceed through a hydrogen atom transfer to NiOOH. In this study, we establish that there is a second, more dominant general alcohol oxidation pathway on NiOOH enabled at more positive potentials. Using a three-step electrochemical procedure we developed, we deconvoluted the currents corresponding to these two pathways for various alcohols and aldehydes. The results show that alcohols and aldehydes have a distinct difference in their respective preferences for the two oxidation pathways. Our three-step electrochemical procedure also allowed us to evaluate the Ni valence involved with the different oxidation pathways to elucidate their mechanistic differences. Using these experimental results coupled with a computational investigation, we propose that the new pathway entails hydride transfer from the substrate to Ni4+ sites in NiOOH. This study offers an essential foundation to understand various oxidative electrochemical dehydrogenation reactions on oxide and hydroxide-based catalytic electrodes.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.0c10924</identifier><identifier>PMID: 33320654</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemistry</subject><ispartof>Journal of the American Chemical Society, 2020-12, Vol.142 (51), p.21538-21547</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-b2476c9dca514b7114e57b9c12fbea88716feb6e29e2e76d5a3881cb36352aa53</citedby><cites>FETCH-LOGICAL-a351t-b2476c9dca514b7114e57b9c12fbea88716feb6e29e2e76d5a3881cb36352aa53</cites><orcidid>0000-0003-1945-8794 ; 0000-0002-3782-6995 ; 0000000319458794 ; 0000000237826995</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.0c10924$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.0c10924$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33320654$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1853692$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bender, Michael T</creatorcontrib><creatorcontrib>Lam, Yan Choi</creatorcontrib><creatorcontrib>Hammes-Schiffer, Sharon</creatorcontrib><creatorcontrib>Choi, Kyoung-Shin</creatorcontrib><creatorcontrib>Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><title>Unraveling Two Pathways for Electrochemical Alcohol and Aldehyde Oxidation on NiOOH</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Selective oxidation of alcohols to their corresponding aldehyde or carboxylic acid is one of the most important classes of organic synthesis reactions. In addition, electrochemical alcohol oxidation is considered a viable anode reaction that can be paired with H2 evolution or other reductive fuel production reactions in electrochemical and photoelectrochemical cells. NiOOH, a material that has been extensively studied as an oxygen evolution catalyst, is among the most promising electrocatalysts for selective alcohol oxidation. Electrochemical alcohol oxidation by NiOOH has been understood since the 1970s to proceed through a hydrogen atom transfer to NiOOH. In this study, we establish that there is a second, more dominant general alcohol oxidation pathway on NiOOH enabled at more positive potentials. Using a three-step electrochemical procedure we developed, we deconvoluted the currents corresponding to these two pathways for various alcohols and aldehydes. The results show that alcohols and aldehydes have a distinct difference in their respective preferences for the two oxidation pathways. Our three-step electrochemical procedure also allowed us to evaluate the Ni valence involved with the different oxidation pathways to elucidate their mechanistic differences. Using these experimental results coupled with a computational investigation, we propose that the new pathway entails hydride transfer from the substrate to Ni4+ sites in NiOOH. This study offers an essential foundation to understand various oxidative electrochemical dehydrogenation reactions on oxide and hydroxide-based catalytic electrodes.</description><subject>Chemistry</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNptkEtLxDAURoMoOo7uXEtx5cJqHk3aLmUYHyBWcFyHNL21GdpGk1adf2-GGXUjXMgNnHz5OAidEHxJMCVXS6X9JdYE5zTZQRPCKY45oWIXTTDGNE4zwQ7QoffLcE1oRvbRAWOMYsGTCXp-6Z36gNb0r9Hi00ZPamg-1cpHtXXRvAU9OKsb6IxWbXTdatvYNlJ9FfYKmlUFUfFlKjUY20dhHk1R3B2hvVq1Ho635xS93MwXs7v4obi9n10_xIpxMsQlTVKh80orTpIyJSQBnpa5JrQuQWVZSkQNpQCaA4VUVFyxLCO6ZIJxqhRnU3S2ybV-MNJrM4ButO370FqSjDOR0wCdb6A3Z99H8IPsjNfQtqoHO3oZSmBBU8rSgF5sUO2s9w5q-eZMp9xKEizXruXatdy6DvjpNnksO6h-4R-5f1-vXy3t6Ppg4_-sbw0Ohl4</recordid><startdate>20201223</startdate><enddate>20201223</enddate><creator>Bender, Michael T</creator><creator>Lam, Yan Choi</creator><creator>Hammes-Schiffer, Sharon</creator><creator>Choi, Kyoung-Shin</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1945-8794</orcidid><orcidid>https://orcid.org/0000-0002-3782-6995</orcidid><orcidid>https://orcid.org/0000000319458794</orcidid><orcidid>https://orcid.org/0000000237826995</orcidid></search><sort><creationdate>20201223</creationdate><title>Unraveling Two Pathways for Electrochemical Alcohol and Aldehyde Oxidation on NiOOH</title><author>Bender, Michael T ; Lam, Yan Choi ; Hammes-Schiffer, Sharon ; Choi, Kyoung-Shin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-b2476c9dca514b7114e57b9c12fbea88716feb6e29e2e76d5a3881cb36352aa53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bender, Michael T</creatorcontrib><creatorcontrib>Lam, Yan Choi</creatorcontrib><creatorcontrib>Hammes-Schiffer, Sharon</creatorcontrib><creatorcontrib>Choi, Kyoung-Shin</creatorcontrib><creatorcontrib>Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bender, Michael T</au><au>Lam, Yan Choi</au><au>Hammes-Schiffer, Sharon</au><au>Choi, Kyoung-Shin</au><aucorp>Univ. of Wisconsin, Madison, WI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unraveling Two Pathways for Electrochemical Alcohol and Aldehyde Oxidation on NiOOH</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2020-12-23</date><risdate>2020</risdate><volume>142</volume><issue>51</issue><spage>21538</spage><epage>21547</epage><pages>21538-21547</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Selective oxidation of alcohols to their corresponding aldehyde or carboxylic acid is one of the most important classes of organic synthesis reactions. In addition, electrochemical alcohol oxidation is considered a viable anode reaction that can be paired with H2 evolution or other reductive fuel production reactions in electrochemical and photoelectrochemical cells. NiOOH, a material that has been extensively studied as an oxygen evolution catalyst, is among the most promising electrocatalysts for selective alcohol oxidation. Electrochemical alcohol oxidation by NiOOH has been understood since the 1970s to proceed through a hydrogen atom transfer to NiOOH. In this study, we establish that there is a second, more dominant general alcohol oxidation pathway on NiOOH enabled at more positive potentials. Using a three-step electrochemical procedure we developed, we deconvoluted the currents corresponding to these two pathways for various alcohols and aldehydes. The results show that alcohols and aldehydes have a distinct difference in their respective preferences for the two oxidation pathways. Our three-step electrochemical procedure also allowed us to evaluate the Ni valence involved with the different oxidation pathways to elucidate their mechanistic differences. Using these experimental results coupled with a computational investigation, we propose that the new pathway entails hydride transfer from the substrate to Ni4+ sites in NiOOH. This study offers an essential foundation to understand various oxidative electrochemical dehydrogenation reactions on oxide and hydroxide-based catalytic electrodes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33320654</pmid><doi>10.1021/jacs.0c10924</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1945-8794</orcidid><orcidid>https://orcid.org/0000-0002-3782-6995</orcidid><orcidid>https://orcid.org/0000000319458794</orcidid><orcidid>https://orcid.org/0000000237826995</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2020-12, Vol.142 (51), p.21538-21547 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_osti_scitechconnect_1853692 |
source | ACS Publications |
subjects | Chemistry |
title | Unraveling Two Pathways for Electrochemical Alcohol and Aldehyde Oxidation on NiOOH |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T16%3A08%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unraveling%20Two%20Pathways%20for%20Electrochemical%20Alcohol%20and%20Aldehyde%20Oxidation%20on%20NiOOH&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Bender,%20Michael%20T&rft.aucorp=Univ.%20of%20Wisconsin,%20Madison,%20WI%20(United%20States)&rft.date=2020-12-23&rft.volume=142&rft.issue=51&rft.spage=21538&rft.epage=21547&rft.pages=21538-21547&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.0c10924&rft_dat=%3Cproquest_osti_%3E2470627237%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2470627237&rft_id=info:pmid/33320654&rfr_iscdi=true |