Effect of tectonic processes on biosphere–geosphere feedbacks across a convergent margin
The subsurface is among Earth’s largest biomes, but the extent to which microbial communities vary across tectonic plate boundaries or interact with subduction-scale geological processes remains unknown. Here we compare bacterial community composition with deep-subsurface geochemistry from 21 hot sp...
Gespeichert in:
Veröffentlicht in: | Nature geoscience 2021-05, Vol.14 (5), p.301-306 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 306 |
---|---|
container_issue | 5 |
container_start_page | 301 |
container_title | Nature geoscience |
container_volume | 14 |
creator | Fullerton, Katherine M. Schrenk, Matthew O. Yücel, Mustafa Manini, Elena Basili, Marco Rogers, Timothy J. Fattorini, Daniele Di Carlo, Marta d’Errico, Giuseppe Regoli, Francesco Nakagawa, Mayuko Vetriani, Costantino Smedile, Francesco Ramírez, Carlos Miller, Heather Morrison, Shaunna M. Buongiorno, Joy Jessen, Gerdhard L. Steen, Andrew D. Martínez, María de Moor, J. Maarten Barry, Peter H. Giovannelli, Donato Lloyd, Karen G. |
description | The subsurface is among Earth’s largest biomes, but the extent to which microbial communities vary across tectonic plate boundaries or interact with subduction-scale geological processes remains unknown. Here we compare bacterial community composition with deep-subsurface geochemistry from 21 hot springs across the Costa Rican convergent margin. We find that cation and anion compositions of the springs reflect the dip angle and position of the underlying tectonic structure and also correlate with the bacterial community. Co-occurring microbial cliques related to cultured chemolithoautotrophs that use the reverse tricarboxylic acid cycle (rTCA) as well as abundances of metagenomic rTCA genes correlate with concentrations of slab-volatilized carbon. This, combined with carbon isotope evidence, suggests that fixation of slab-derived CO
2
into biomass may support a chemolithoautotrophy-based subsurface ecosystem. We calculate that this forearc subsurface biosphere could sequester 1.4 × 10
9
to 1.4 × 10
10
mol of carbon per year, which would decrease estimates of the total carbon delivered to the mantle by 2 to 22%. Based on the observed correlations, we suggest that distribution and composition of the subsurface bacterial community are probably affected by deep tectonic processes across the Costa Rican convergent margin and that, by sequestering carbon volatilized during subduction, these chemolithoautotrophic communities could in turn impact the geosphere.
The subsurface biosphere across a convergent margin may reflect tectonic processes and reduce carbon transfer to the mantle, according to bacterial and geochemical correlations from hot springs across the Costa Rican margin. |
doi_str_mv | 10.1038/s41561-021-00725-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1853609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2525224374</sourcerecordid><originalsourceid>FETCH-LOGICAL-a479t-46e6546ee0e63a454bd50551d2d9504effbc1fcbfc1df8956f2c2a45fbe310663</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhSMEEuXnAqwsWAfGju0kS1SVH6kSG9iwsRJnnKZAXOwUiR134IachKEpYoes8ZvFN6N5L0lOOJxzyIqLKLnSPAVBBblQKewkE54rkUIJxe5vX5RyPzmIcQmgQeZqkjzOnEM7MO_YQOr7zrJV8BZjxMh8z-rOx9UCA359fLa47ZlDbOrKPkVW2eAjCbO-f8PQYj-wlyq0XX-U7LnqOeLxVg-Th6vZ_fQmnd9d304v52kl83JIpUat6ENAnVVSybpRoBRvRFMqkOhcbbmztbO8cUWptBNWEOdqzDhonR0mp-NeH4fORNuRkQVd05MfwwuVaSgJOhshMve6xjiYpV-Hnu4yQtETMsslUWKkNqYCOrMKHbl5NxzMT9BmDNpQ0GYTtAEaysahSHDfYvhb_c_UN9rqgk0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2525224374</pqid></control><display><type>article</type><title>Effect of tectonic processes on biosphere–geosphere feedbacks across a convergent margin</title><source>SpringerLink Journals - AutoHoldings</source><creator>Fullerton, Katherine M. ; Schrenk, Matthew O. ; Yücel, Mustafa ; Manini, Elena ; Basili, Marco ; Rogers, Timothy J. ; Fattorini, Daniele ; Di Carlo, Marta ; d’Errico, Giuseppe ; Regoli, Francesco ; Nakagawa, Mayuko ; Vetriani, Costantino ; Smedile, Francesco ; Ramírez, Carlos ; Miller, Heather ; Morrison, Shaunna M. ; Buongiorno, Joy ; Jessen, Gerdhard L. ; Steen, Andrew D. ; Martínez, María ; de Moor, J. Maarten ; Barry, Peter H. ; Giovannelli, Donato ; Lloyd, Karen G.</creator><creatorcontrib>Fullerton, Katherine M. ; Schrenk, Matthew O. ; Yücel, Mustafa ; Manini, Elena ; Basili, Marco ; Rogers, Timothy J. ; Fattorini, Daniele ; Di Carlo, Marta ; d’Errico, Giuseppe ; Regoli, Francesco ; Nakagawa, Mayuko ; Vetriani, Costantino ; Smedile, Francesco ; Ramírez, Carlos ; Miller, Heather ; Morrison, Shaunna M. ; Buongiorno, Joy ; Jessen, Gerdhard L. ; Steen, Andrew D. ; Martínez, María ; de Moor, J. Maarten ; Barry, Peter H. ; Giovannelli, Donato ; Lloyd, Karen G. ; Univ. of Tennessee, Knoxville, TN (United States)</creatorcontrib><description>The subsurface is among Earth’s largest biomes, but the extent to which microbial communities vary across tectonic plate boundaries or interact with subduction-scale geological processes remains unknown. Here we compare bacterial community composition with deep-subsurface geochemistry from 21 hot springs across the Costa Rican convergent margin. We find that cation and anion compositions of the springs reflect the dip angle and position of the underlying tectonic structure and also correlate with the bacterial community. Co-occurring microbial cliques related to cultured chemolithoautotrophs that use the reverse tricarboxylic acid cycle (rTCA) as well as abundances of metagenomic rTCA genes correlate with concentrations of slab-volatilized carbon. This, combined with carbon isotope evidence, suggests that fixation of slab-derived CO
2
into biomass may support a chemolithoautotrophy-based subsurface ecosystem. We calculate that this forearc subsurface biosphere could sequester 1.4 × 10
9
to 1.4 × 10
10
mol of carbon per year, which would decrease estimates of the total carbon delivered to the mantle by 2 to 22%. Based on the observed correlations, we suggest that distribution and composition of the subsurface bacterial community are probably affected by deep tectonic processes across the Costa Rican convergent margin and that, by sequestering carbon volatilized during subduction, these chemolithoautotrophic communities could in turn impact the geosphere.
The subsurface biosphere across a convergent margin may reflect tectonic processes and reduce carbon transfer to the mantle, according to bacterial and geochemical correlations from hot springs across the Costa Rican margin.</description><identifier>ISSN: 1752-0894</identifier><identifier>EISSN: 1752-0908</identifier><identifier>DOI: 10.1038/s41561-021-00725-0</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/158/855 ; 704/47/4113 ; Anions ; Bacteria ; Biosphere ; Carbon ; Carbon dioxide ; Carbon isotopes ; Carbon sequestration ; Cations ; Community composition ; Composition ; Convergence ; Correlation ; Earth and Environmental Science ; Earth mantle ; Earth Sciences ; Earth System Sciences ; Genes ; Geochemistry ; Geological processes ; Geology ; Geophysics/Geodesy ; Geosphere ; Hot springs ; Metagenomics ; Microbial activity ; Microorganisms ; Plate boundaries ; Plate tectonics ; Plates (tectonics) ; Sequestering ; Subduction ; Subduction (geology) ; Tectonic processes ; Tricarboxylic acid cycle</subject><ispartof>Nature geoscience, 2021-05, Vol.14 (5), p.301-306</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a479t-46e6546ee0e63a454bd50551d2d9504effbc1fcbfc1df8956f2c2a45fbe310663</citedby><cites>FETCH-LOGICAL-a479t-46e6546ee0e63a454bd50551d2d9504effbc1fcbfc1df8956f2c2a45fbe310663</cites><orcidid>0000-0002-7478-902X ; 0000-0002-7442-0599 ; 0000-0003-0914-6375 ; 0000-0003-1667-8038 ; 0000-0001-7182-8233 ; 0000-0002-6960-1555 ; 0000-0002-5623-8558 ; 0000000316678038 ; 0000000171828233 ; 000000027478902X ; 0000000256238558 ; 0000000274420599 ; 0000000309146375 ; 0000000269601555</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41561-021-00725-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41561-021-00725-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1853609$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fullerton, Katherine M.</creatorcontrib><creatorcontrib>Schrenk, Matthew O.</creatorcontrib><creatorcontrib>Yücel, Mustafa</creatorcontrib><creatorcontrib>Manini, Elena</creatorcontrib><creatorcontrib>Basili, Marco</creatorcontrib><creatorcontrib>Rogers, Timothy J.</creatorcontrib><creatorcontrib>Fattorini, Daniele</creatorcontrib><creatorcontrib>Di Carlo, Marta</creatorcontrib><creatorcontrib>d’Errico, Giuseppe</creatorcontrib><creatorcontrib>Regoli, Francesco</creatorcontrib><creatorcontrib>Nakagawa, Mayuko</creatorcontrib><creatorcontrib>Vetriani, Costantino</creatorcontrib><creatorcontrib>Smedile, Francesco</creatorcontrib><creatorcontrib>Ramírez, Carlos</creatorcontrib><creatorcontrib>Miller, Heather</creatorcontrib><creatorcontrib>Morrison, Shaunna M.</creatorcontrib><creatorcontrib>Buongiorno, Joy</creatorcontrib><creatorcontrib>Jessen, Gerdhard L.</creatorcontrib><creatorcontrib>Steen, Andrew D.</creatorcontrib><creatorcontrib>Martínez, María</creatorcontrib><creatorcontrib>de Moor, J. Maarten</creatorcontrib><creatorcontrib>Barry, Peter H.</creatorcontrib><creatorcontrib>Giovannelli, Donato</creatorcontrib><creatorcontrib>Lloyd, Karen G.</creatorcontrib><creatorcontrib>Univ. of Tennessee, Knoxville, TN (United States)</creatorcontrib><title>Effect of tectonic processes on biosphere–geosphere feedbacks across a convergent margin</title><title>Nature geoscience</title><addtitle>Nat. Geosci</addtitle><description>The subsurface is among Earth’s largest biomes, but the extent to which microbial communities vary across tectonic plate boundaries or interact with subduction-scale geological processes remains unknown. Here we compare bacterial community composition with deep-subsurface geochemistry from 21 hot springs across the Costa Rican convergent margin. We find that cation and anion compositions of the springs reflect the dip angle and position of the underlying tectonic structure and also correlate with the bacterial community. Co-occurring microbial cliques related to cultured chemolithoautotrophs that use the reverse tricarboxylic acid cycle (rTCA) as well as abundances of metagenomic rTCA genes correlate with concentrations of slab-volatilized carbon. This, combined with carbon isotope evidence, suggests that fixation of slab-derived CO
2
into biomass may support a chemolithoautotrophy-based subsurface ecosystem. We calculate that this forearc subsurface biosphere could sequester 1.4 × 10
9
to 1.4 × 10
10
mol of carbon per year, which would decrease estimates of the total carbon delivered to the mantle by 2 to 22%. Based on the observed correlations, we suggest that distribution and composition of the subsurface bacterial community are probably affected by deep tectonic processes across the Costa Rican convergent margin and that, by sequestering carbon volatilized during subduction, these chemolithoautotrophic communities could in turn impact the geosphere.
The subsurface biosphere across a convergent margin may reflect tectonic processes and reduce carbon transfer to the mantle, according to bacterial and geochemical correlations from hot springs across the Costa Rican margin.</description><subject>704/158/855</subject><subject>704/47/4113</subject><subject>Anions</subject><subject>Bacteria</subject><subject>Biosphere</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon isotopes</subject><subject>Carbon sequestration</subject><subject>Cations</subject><subject>Community composition</subject><subject>Composition</subject><subject>Convergence</subject><subject>Correlation</subject><subject>Earth and Environmental Science</subject><subject>Earth mantle</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Genes</subject><subject>Geochemistry</subject><subject>Geological processes</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Geosphere</subject><subject>Hot springs</subject><subject>Metagenomics</subject><subject>Microbial activity</subject><subject>Microorganisms</subject><subject>Plate boundaries</subject><subject>Plate tectonics</subject><subject>Plates (tectonics)</subject><subject>Sequestering</subject><subject>Subduction</subject><subject>Subduction (geology)</subject><subject>Tectonic processes</subject><subject>Tricarboxylic acid cycle</subject><issn>1752-0894</issn><issn>1752-0908</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1OwzAQhSMEEuXnAqwsWAfGju0kS1SVH6kSG9iwsRJnnKZAXOwUiR134IachKEpYoes8ZvFN6N5L0lOOJxzyIqLKLnSPAVBBblQKewkE54rkUIJxe5vX5RyPzmIcQmgQeZqkjzOnEM7MO_YQOr7zrJV8BZjxMh8z-rOx9UCA359fLa47ZlDbOrKPkVW2eAjCbO-f8PQYj-wlyq0XX-U7LnqOeLxVg-Th6vZ_fQmnd9d304v52kl83JIpUat6ENAnVVSybpRoBRvRFMqkOhcbbmztbO8cUWptBNWEOdqzDhonR0mp-NeH4fORNuRkQVd05MfwwuVaSgJOhshMve6xjiYpV-Hnu4yQtETMsslUWKkNqYCOrMKHbl5NxzMT9BmDNpQ0GYTtAEaysahSHDfYvhb_c_UN9rqgk0</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Fullerton, Katherine M.</creator><creator>Schrenk, Matthew O.</creator><creator>Yücel, Mustafa</creator><creator>Manini, Elena</creator><creator>Basili, Marco</creator><creator>Rogers, Timothy J.</creator><creator>Fattorini, Daniele</creator><creator>Di Carlo, Marta</creator><creator>d’Errico, Giuseppe</creator><creator>Regoli, Francesco</creator><creator>Nakagawa, Mayuko</creator><creator>Vetriani, Costantino</creator><creator>Smedile, Francesco</creator><creator>Ramírez, Carlos</creator><creator>Miller, Heather</creator><creator>Morrison, Shaunna M.</creator><creator>Buongiorno, Joy</creator><creator>Jessen, Gerdhard L.</creator><creator>Steen, Andrew D.</creator><creator>Martínez, María</creator><creator>de Moor, J. Maarten</creator><creator>Barry, Peter H.</creator><creator>Giovannelli, Donato</creator><creator>Lloyd, Karen G.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FE</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>LK8</scope><scope>M7P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7478-902X</orcidid><orcidid>https://orcid.org/0000-0002-7442-0599</orcidid><orcidid>https://orcid.org/0000-0003-0914-6375</orcidid><orcidid>https://orcid.org/0000-0003-1667-8038</orcidid><orcidid>https://orcid.org/0000-0001-7182-8233</orcidid><orcidid>https://orcid.org/0000-0002-6960-1555</orcidid><orcidid>https://orcid.org/0000-0002-5623-8558</orcidid><orcidid>https://orcid.org/0000000316678038</orcidid><orcidid>https://orcid.org/0000000171828233</orcidid><orcidid>https://orcid.org/000000027478902X</orcidid><orcidid>https://orcid.org/0000000256238558</orcidid><orcidid>https://orcid.org/0000000274420599</orcidid><orcidid>https://orcid.org/0000000309146375</orcidid><orcidid>https://orcid.org/0000000269601555</orcidid></search><sort><creationdate>20210501</creationdate><title>Effect of tectonic processes on biosphere–geosphere feedbacks across a convergent margin</title><author>Fullerton, Katherine M. ; Schrenk, Matthew O. ; Yücel, Mustafa ; Manini, Elena ; Basili, Marco ; Rogers, Timothy J. ; Fattorini, Daniele ; Di Carlo, Marta ; d’Errico, Giuseppe ; Regoli, Francesco ; Nakagawa, Mayuko ; Vetriani, Costantino ; Smedile, Francesco ; Ramírez, Carlos ; Miller, Heather ; Morrison, Shaunna M. ; Buongiorno, Joy ; Jessen, Gerdhard L. ; Steen, Andrew D. ; Martínez, María ; de Moor, J. Maarten ; Barry, Peter H. ; Giovannelli, Donato ; Lloyd, Karen G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a479t-46e6546ee0e63a454bd50551d2d9504effbc1fcbfc1df8956f2c2a45fbe310663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>704/158/855</topic><topic>704/47/4113</topic><topic>Anions</topic><topic>Bacteria</topic><topic>Biosphere</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon isotopes</topic><topic>Carbon sequestration</topic><topic>Cations</topic><topic>Community composition</topic><topic>Composition</topic><topic>Convergence</topic><topic>Correlation</topic><topic>Earth and Environmental Science</topic><topic>Earth mantle</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Genes</topic><topic>Geochemistry</topic><topic>Geological processes</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Geosphere</topic><topic>Hot springs</topic><topic>Metagenomics</topic><topic>Microbial activity</topic><topic>Microorganisms</topic><topic>Plate boundaries</topic><topic>Plate tectonics</topic><topic>Plates (tectonics)</topic><topic>Sequestering</topic><topic>Subduction</topic><topic>Subduction (geology)</topic><topic>Tectonic processes</topic><topic>Tricarboxylic acid cycle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fullerton, Katherine M.</creatorcontrib><creatorcontrib>Schrenk, Matthew O.</creatorcontrib><creatorcontrib>Yücel, Mustafa</creatorcontrib><creatorcontrib>Manini, Elena</creatorcontrib><creatorcontrib>Basili, Marco</creatorcontrib><creatorcontrib>Rogers, Timothy J.</creatorcontrib><creatorcontrib>Fattorini, Daniele</creatorcontrib><creatorcontrib>Di Carlo, Marta</creatorcontrib><creatorcontrib>d’Errico, Giuseppe</creatorcontrib><creatorcontrib>Regoli, Francesco</creatorcontrib><creatorcontrib>Nakagawa, Mayuko</creatorcontrib><creatorcontrib>Vetriani, Costantino</creatorcontrib><creatorcontrib>Smedile, Francesco</creatorcontrib><creatorcontrib>Ramírez, Carlos</creatorcontrib><creatorcontrib>Miller, Heather</creatorcontrib><creatorcontrib>Morrison, Shaunna M.</creatorcontrib><creatorcontrib>Buongiorno, Joy</creatorcontrib><creatorcontrib>Jessen, Gerdhard L.</creatorcontrib><creatorcontrib>Steen, Andrew D.</creatorcontrib><creatorcontrib>Martínez, María</creatorcontrib><creatorcontrib>de Moor, J. Maarten</creatorcontrib><creatorcontrib>Barry, Peter H.</creatorcontrib><creatorcontrib>Giovannelli, Donato</creatorcontrib><creatorcontrib>Lloyd, Karen G.</creatorcontrib><creatorcontrib>Univ. of Tennessee, Knoxville, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>OSTI.GOV</collection><jtitle>Nature geoscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fullerton, Katherine M.</au><au>Schrenk, Matthew O.</au><au>Yücel, Mustafa</au><au>Manini, Elena</au><au>Basili, Marco</au><au>Rogers, Timothy J.</au><au>Fattorini, Daniele</au><au>Di Carlo, Marta</au><au>d’Errico, Giuseppe</au><au>Regoli, Francesco</au><au>Nakagawa, Mayuko</au><au>Vetriani, Costantino</au><au>Smedile, Francesco</au><au>Ramírez, Carlos</au><au>Miller, Heather</au><au>Morrison, Shaunna M.</au><au>Buongiorno, Joy</au><au>Jessen, Gerdhard L.</au><au>Steen, Andrew D.</au><au>Martínez, María</au><au>de Moor, J. Maarten</au><au>Barry, Peter H.</au><au>Giovannelli, Donato</au><au>Lloyd, Karen G.</au><aucorp>Univ. of Tennessee, Knoxville, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of tectonic processes on biosphere–geosphere feedbacks across a convergent margin</atitle><jtitle>Nature geoscience</jtitle><stitle>Nat. Geosci</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>14</volume><issue>5</issue><spage>301</spage><epage>306</epage><pages>301-306</pages><issn>1752-0894</issn><eissn>1752-0908</eissn><abstract>The subsurface is among Earth’s largest biomes, but the extent to which microbial communities vary across tectonic plate boundaries or interact with subduction-scale geological processes remains unknown. Here we compare bacterial community composition with deep-subsurface geochemistry from 21 hot springs across the Costa Rican convergent margin. We find that cation and anion compositions of the springs reflect the dip angle and position of the underlying tectonic structure and also correlate with the bacterial community. Co-occurring microbial cliques related to cultured chemolithoautotrophs that use the reverse tricarboxylic acid cycle (rTCA) as well as abundances of metagenomic rTCA genes correlate with concentrations of slab-volatilized carbon. This, combined with carbon isotope evidence, suggests that fixation of slab-derived CO
2
into biomass may support a chemolithoautotrophy-based subsurface ecosystem. We calculate that this forearc subsurface biosphere could sequester 1.4 × 10
9
to 1.4 × 10
10
mol of carbon per year, which would decrease estimates of the total carbon delivered to the mantle by 2 to 22%. Based on the observed correlations, we suggest that distribution and composition of the subsurface bacterial community are probably affected by deep tectonic processes across the Costa Rican convergent margin and that, by sequestering carbon volatilized during subduction, these chemolithoautotrophic communities could in turn impact the geosphere.
The subsurface biosphere across a convergent margin may reflect tectonic processes and reduce carbon transfer to the mantle, according to bacterial and geochemical correlations from hot springs across the Costa Rican margin.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41561-021-00725-0</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7478-902X</orcidid><orcidid>https://orcid.org/0000-0002-7442-0599</orcidid><orcidid>https://orcid.org/0000-0003-0914-6375</orcidid><orcidid>https://orcid.org/0000-0003-1667-8038</orcidid><orcidid>https://orcid.org/0000-0001-7182-8233</orcidid><orcidid>https://orcid.org/0000-0002-6960-1555</orcidid><orcidid>https://orcid.org/0000-0002-5623-8558</orcidid><orcidid>https://orcid.org/0000000316678038</orcidid><orcidid>https://orcid.org/0000000171828233</orcidid><orcidid>https://orcid.org/000000027478902X</orcidid><orcidid>https://orcid.org/0000000256238558</orcidid><orcidid>https://orcid.org/0000000274420599</orcidid><orcidid>https://orcid.org/0000000309146375</orcidid><orcidid>https://orcid.org/0000000269601555</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1752-0894 |
ispartof | Nature geoscience, 2021-05, Vol.14 (5), p.301-306 |
issn | 1752-0894 1752-0908 |
language | eng |
recordid | cdi_osti_scitechconnect_1853609 |
source | SpringerLink Journals - AutoHoldings |
subjects | 704/158/855 704/47/4113 Anions Bacteria Biosphere Carbon Carbon dioxide Carbon isotopes Carbon sequestration Cations Community composition Composition Convergence Correlation Earth and Environmental Science Earth mantle Earth Sciences Earth System Sciences Genes Geochemistry Geological processes Geology Geophysics/Geodesy Geosphere Hot springs Metagenomics Microbial activity Microorganisms Plate boundaries Plate tectonics Plates (tectonics) Sequestering Subduction Subduction (geology) Tectonic processes Tricarboxylic acid cycle |
title | Effect of tectonic processes on biosphere–geosphere feedbacks across a convergent margin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A11%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20tectonic%20processes%20on%20biosphere%E2%80%93geosphere%20feedbacks%20across%20a%20convergent%20margin&rft.jtitle=Nature%20geoscience&rft.au=Fullerton,%20Katherine%20M.&rft.aucorp=Univ.%20of%20Tennessee,%20Knoxville,%20TN%20(United%20States)&rft.date=2021-05-01&rft.volume=14&rft.issue=5&rft.spage=301&rft.epage=306&rft.pages=301-306&rft.issn=1752-0894&rft.eissn=1752-0908&rft_id=info:doi/10.1038/s41561-021-00725-0&rft_dat=%3Cproquest_osti_%3E2525224374%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2525224374&rft_id=info:pmid/&rfr_iscdi=true |