Active liquid crystals powered by force-sensing DNA-motor clusters
Significance Single-molecule techniques have elucidated how isolated molecular motors generate piconewton forces with unprecedented detail. However, in diverse biological and synthetic settings, force-generating proteins collectively power nonequilibrium dynamics, including continuous large-scale re...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2021-07, Vol.118 (30) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 30 |
container_start_page | |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 118 |
creator | Tayar, Alexandra M. Hagan, Michael F. Dogic, Zvonimir |
description | Significance Single-molecule techniques have elucidated how isolated molecular motors generate piconewton forces with unprecedented detail. However, in diverse biological and synthetic settings, force-generating proteins collectively power nonequilibrium dynamics, including continuous large-scale rearrangements and persistent fluid flows. Characterizing motor-generated forces in these dense and dynamical environments remains a challenge. We assembled a reversible DNA-based force-sensing probe that, by an optical readout, reveals the molecular arrangements and the force loads experienced by kinesin motors. These probes provide insight into motor-generated forces that collectively power the unique dynamics of microtubule-based active nematics, a noteworthy example of an internally driven active matter system. DNA-based force probes can be extended to study forces and stresses in various synthetic systems as well as diverse cellular environments. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1853367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1853367</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18533673</originalsourceid><addsrcrecordid>eNqNyzkOwjAQQFELgURY7mDRW5rsSRk2UVHRRzCZgFGwweOAuD0UHIDqN-8PRBBCGaosKWEoAoAoV0USJWMxYb4CQJkWEIhlhV4_SXb60etGonuzP3Ys7_ZFjhp5esvWOiTFZFibs1zvK3Wz3jqJXc-eHM_EqP0uNP91KhbbzWG1U5a9rhm1J7ygNYbQ12GRxnGWx3-hD1iaOz8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Active liquid crystals powered by force-sensing DNA-motor clusters</title><source>PubMed (Medline)</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Alma/SFX Local Collection</source><source>JSTOR</source><creator>Tayar, Alexandra M. ; Hagan, Michael F. ; Dogic, Zvonimir</creator><creatorcontrib>Tayar, Alexandra M. ; Hagan, Michael F. ; Dogic, Zvonimir ; Univ. of California, Santa Barbara, CA (United States)</creatorcontrib><description>Significance Single-molecule techniques have elucidated how isolated molecular motors generate piconewton forces with unprecedented detail. However, in diverse biological and synthetic settings, force-generating proteins collectively power nonequilibrium dynamics, including continuous large-scale rearrangements and persistent fluid flows. Characterizing motor-generated forces in these dense and dynamical environments remains a challenge. We assembled a reversible DNA-based force-sensing probe that, by an optical readout, reveals the molecular arrangements and the force loads experienced by kinesin motors. These probes provide insight into motor-generated forces that collectively power the unique dynamics of microtubule-based active nematics, a noteworthy example of an internally driven active matter system. DNA-based force probes can be extended to study forces and stresses in various synthetic systems as well as diverse cellular environments.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Science & Technology - Other Topics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-07, Vol.118 (30)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000292112434 ; 0000000214182058</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1853367$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tayar, Alexandra M.</creatorcontrib><creatorcontrib>Hagan, Michael F.</creatorcontrib><creatorcontrib>Dogic, Zvonimir</creatorcontrib><creatorcontrib>Univ. of California, Santa Barbara, CA (United States)</creatorcontrib><title>Active liquid crystals powered by force-sensing DNA-motor clusters</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>Significance Single-molecule techniques have elucidated how isolated molecular motors generate piconewton forces with unprecedented detail. However, in diverse biological and synthetic settings, force-generating proteins collectively power nonequilibrium dynamics, including continuous large-scale rearrangements and persistent fluid flows. Characterizing motor-generated forces in these dense and dynamical environments remains a challenge. We assembled a reversible DNA-based force-sensing probe that, by an optical readout, reveals the molecular arrangements and the force loads experienced by kinesin motors. These probes provide insight into motor-generated forces that collectively power the unique dynamics of microtubule-based active nematics, a noteworthy example of an internally driven active matter system. DNA-based force probes can be extended to study forces and stresses in various synthetic systems as well as diverse cellular environments.</description><subject>Science & Technology - Other Topics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNyzkOwjAQQFELgURY7mDRW5rsSRk2UVHRRzCZgFGwweOAuD0UHIDqN-8PRBBCGaosKWEoAoAoV0USJWMxYb4CQJkWEIhlhV4_SXb60etGonuzP3Ys7_ZFjhp5esvWOiTFZFibs1zvK3Wz3jqJXc-eHM_EqP0uNP91KhbbzWG1U5a9rhm1J7ygNYbQ12GRxnGWx3-hD1iaOz8</recordid><startdate>20210720</startdate><enddate>20210720</enddate><creator>Tayar, Alexandra M.</creator><creator>Hagan, Michael F.</creator><creator>Dogic, Zvonimir</creator><general>National Academy of Sciences</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000292112434</orcidid><orcidid>https://orcid.org/0000000214182058</orcidid></search><sort><creationdate>20210720</creationdate><title>Active liquid crystals powered by force-sensing DNA-motor clusters</title><author>Tayar, Alexandra M. ; Hagan, Michael F. ; Dogic, Zvonimir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18533673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Science & Technology - Other Topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tayar, Alexandra M.</creatorcontrib><creatorcontrib>Hagan, Michael F.</creatorcontrib><creatorcontrib>Dogic, Zvonimir</creatorcontrib><creatorcontrib>Univ. of California, Santa Barbara, CA (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tayar, Alexandra M.</au><au>Hagan, Michael F.</au><au>Dogic, Zvonimir</au><aucorp>Univ. of California, Santa Barbara, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active liquid crystals powered by force-sensing DNA-motor clusters</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2021-07-20</date><risdate>2021</risdate><volume>118</volume><issue>30</issue><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Significance Single-molecule techniques have elucidated how isolated molecular motors generate piconewton forces with unprecedented detail. However, in diverse biological and synthetic settings, force-generating proteins collectively power nonequilibrium dynamics, including continuous large-scale rearrangements and persistent fluid flows. Characterizing motor-generated forces in these dense and dynamical environments remains a challenge. We assembled a reversible DNA-based force-sensing probe that, by an optical readout, reveals the molecular arrangements and the force loads experienced by kinesin motors. These probes provide insight into motor-generated forces that collectively power the unique dynamics of microtubule-based active nematics, a noteworthy example of an internally driven active matter system. DNA-based force probes can be extended to study forces and stresses in various synthetic systems as well as diverse cellular environments.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><orcidid>https://orcid.org/0000000292112434</orcidid><orcidid>https://orcid.org/0000000214182058</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2021-07, Vol.118 (30) |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_osti_scitechconnect_1853367 |
source | PubMed (Medline); Full-Text Journals in Chemistry (Open access); Alma/SFX Local Collection; JSTOR |
subjects | Science & Technology - Other Topics |
title | Active liquid crystals powered by force-sensing DNA-motor clusters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T18%3A53%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20liquid%20crystals%20powered%20by%20force-sensing%20DNA-motor%20clusters&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Tayar,%20Alexandra%20M.&rft.aucorp=Univ.%20of%20California,%20Santa%20Barbara,%20CA%20(United%20States)&rft.date=2021-07-20&rft.volume=118&rft.issue=30&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/&rft_dat=%3Costi%3E1853367%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |