Vegetation Response to Rising CO2 Amplifies Contrasts in Water Resources Between Global Wet and Dry Land Areas

Rising atmospheric CO2 impacts on vegetation physiological processes can alter land feedbacks on precipitation and water resources, but understanding of regional differences in these changes is uncertain. We investigate the impact of rising CO2 on land water resources for different wetness levels us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2021-07, Vol.48 (14), p.n/a
Hauptverfasser: Cui, Jiangpeng, Yang, Hui, Huntingford, Chris, Kooperman, Gabriel J., Lian, Xu, He, Mingzhu, Piao, Shilong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 14
container_start_page
container_title Geophysical research letters
container_volume 48
creator Cui, Jiangpeng
Yang, Hui
Huntingford, Chris
Kooperman, Gabriel J.
Lian, Xu
He, Mingzhu
Piao, Shilong
description Rising atmospheric CO2 impacts on vegetation physiological processes can alter land feedbacks on precipitation and water resources, but understanding of regional differences in these changes is uncertain. We investigate the impact of rising CO2 on land water resources for different wetness levels using four Earth system models. We find an overall tendency of runoff to increase across all wetness levels. However, runoff increases in wet regions are much larger than those in dry regions, especially in wet seasons. This substantial amplification of contrasts between wet and dry regions increases at 3% per 100 ppm increase in CO2 relative to the historical period, reaching 18% for a quadrupling of CO2, quantified by a new wetting contrast index (WCI). Physiological effects suppress evapotranspiration more in wet than dry regions, which has a larger contribution than radiative forcing to the amplification of runoff contrast, reshaping the spatial distribution of future land water resources. Plain Language Summary Increasing atmospheric CO2 concentration is expected to intensify the global water cycle and reshape the regional distribution of water resources. Using specialized simulations from four Earth system models, this study shows that physiological effects (stomatal closure and leaf area increase), rather than radiative forcing, of rising CO2 are the main driver of amplified regional wetness contrasts, with stronger suppression of evapotranspiration and so larger runoff increases in wet regions than in dry regions. These results underscore the importance of accounting for the physiological forcing of rising CO2 in hydrological change projections, and imply the urgency for future water resource assessments and managements to adapt for an increasing imbalance in regional water resources. Key Points We quantify land water resources change in response to rising CO2 for different wetness levels using a new wetting contrast index We find a substantial amplification of runoff contrast across wetness levels because the runoff increases more in wet than dry regions Vegetation responses to rising CO2 contribute to amplified runoff contrast by suppressing evapotranspiration more in wet than dry regions
doi_str_mv 10.1029/2021GL094293
format Article
fullrecord <record><control><sourceid>wiley_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1853313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>GRL62664</sourcerecordid><originalsourceid>FETCH-LOGICAL-o2634-714b6aa0e3e0295b36161969d79f6a3b596728738477e7fd139670c017746d113</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMoWKs3P0Dwvjr502RzrKtWYaFQ1B6X7O5sjWyTsomUfnu31IOnebz3m4F5hNwyuGfAzQMHzhYlGMmNOCMTZqTMcgB9TiYwulnOtbokVzF-A4AAwSbEf-IGk00ueLrCuAs-Ik2Brlx0fkOLJafz7a53ncNIi-DTYGOK1Hm6tgmH4074GZoxfMS0R_R00Yfa9nSNiVrf0qfhQMujmA9o4zW56Gwf8eZvTsnHy_N78ZqVy8VbMS-zwJWQmWayVtYCChz_mtVCMcWMMq02nbKinhmlea5FLrVG3bVMjAY0wLSWqmVMTMnd6W6IyVWxcQmbryZ4j02qWD4TgokR4ido73o8VLvBbe1wqBhUxzar_21Wi1WpuFJS_AKATGbk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Vegetation Response to Rising CO2 Amplifies Contrasts in Water Resources Between Global Wet and Dry Land Areas</title><source>Wiley Online Library</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Wiley-Blackwell AGU Digital Archive</source><source>Wiley Online Library (Online service)</source><creator>Cui, Jiangpeng ; Yang, Hui ; Huntingford, Chris ; Kooperman, Gabriel J. ; Lian, Xu ; He, Mingzhu ; Piao, Shilong</creator><creatorcontrib>Cui, Jiangpeng ; Yang, Hui ; Huntingford, Chris ; Kooperman, Gabriel J. ; Lian, Xu ; He, Mingzhu ; Piao, Shilong ; Univ. of Georgia, Athens, GA (United States) ; Univ. of Washington, Seattle, WA (United States)</creatorcontrib><description>Rising atmospheric CO2 impacts on vegetation physiological processes can alter land feedbacks on precipitation and water resources, but understanding of regional differences in these changes is uncertain. We investigate the impact of rising CO2 on land water resources for different wetness levels using four Earth system models. We find an overall tendency of runoff to increase across all wetness levels. However, runoff increases in wet regions are much larger than those in dry regions, especially in wet seasons. This substantial amplification of contrasts between wet and dry regions increases at 3% per 100 ppm increase in CO2 relative to the historical period, reaching 18% for a quadrupling of CO2, quantified by a new wetting contrast index (WCI). Physiological effects suppress evapotranspiration more in wet than dry regions, which has a larger contribution than radiative forcing to the amplification of runoff contrast, reshaping the spatial distribution of future land water resources. Plain Language Summary Increasing atmospheric CO2 concentration is expected to intensify the global water cycle and reshape the regional distribution of water resources. Using specialized simulations from four Earth system models, this study shows that physiological effects (stomatal closure and leaf area increase), rather than radiative forcing, of rising CO2 are the main driver of amplified regional wetness contrasts, with stronger suppression of evapotranspiration and so larger runoff increases in wet regions than in dry regions. These results underscore the importance of accounting for the physiological forcing of rising CO2 in hydrological change projections, and imply the urgency for future water resource assessments and managements to adapt for an increasing imbalance in regional water resources. Key Points We quantify land water resources change in response to rising CO2 for different wetness levels using a new wetting contrast index We find a substantial amplification of runoff contrast across wetness levels because the runoff increases more in wet than dry regions Vegetation responses to rising CO2 contribute to amplified runoff contrast by suppressing evapotranspiration more in wet than dry regions</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2021GL094293</identifier><language>eng</language><publisher>United States: American Geophysical Union (AGU)</publisher><subject>CO2 physiological forcing ; GEOSCIENCES ; land water resources ; runoff ; WWDD</subject><ispartof>Geophysical research letters, 2021-07, Vol.48 (14), p.n/a</ispartof><rights>2021. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8057-2292 ; 0000-0002-3174-4913 ; 0000-0001-6454-8954 ; 0000-0003-4587-541X ; 0000-0002-5941-7770 ; 0000000180572292 ; 0000000231744913 ; 000000034587541X ; 0000000164548954 ; 0000000259417770</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2021GL094293$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2021GL094293$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1853313$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cui, Jiangpeng</creatorcontrib><creatorcontrib>Yang, Hui</creatorcontrib><creatorcontrib>Huntingford, Chris</creatorcontrib><creatorcontrib>Kooperman, Gabriel J.</creatorcontrib><creatorcontrib>Lian, Xu</creatorcontrib><creatorcontrib>He, Mingzhu</creatorcontrib><creatorcontrib>Piao, Shilong</creatorcontrib><creatorcontrib>Univ. of Georgia, Athens, GA (United States)</creatorcontrib><creatorcontrib>Univ. of Washington, Seattle, WA (United States)</creatorcontrib><title>Vegetation Response to Rising CO2 Amplifies Contrasts in Water Resources Between Global Wet and Dry Land Areas</title><title>Geophysical research letters</title><description>Rising atmospheric CO2 impacts on vegetation physiological processes can alter land feedbacks on precipitation and water resources, but understanding of regional differences in these changes is uncertain. We investigate the impact of rising CO2 on land water resources for different wetness levels using four Earth system models. We find an overall tendency of runoff to increase across all wetness levels. However, runoff increases in wet regions are much larger than those in dry regions, especially in wet seasons. This substantial amplification of contrasts between wet and dry regions increases at 3% per 100 ppm increase in CO2 relative to the historical period, reaching 18% for a quadrupling of CO2, quantified by a new wetting contrast index (WCI). Physiological effects suppress evapotranspiration more in wet than dry regions, which has a larger contribution than radiative forcing to the amplification of runoff contrast, reshaping the spatial distribution of future land water resources. Plain Language Summary Increasing atmospheric CO2 concentration is expected to intensify the global water cycle and reshape the regional distribution of water resources. Using specialized simulations from four Earth system models, this study shows that physiological effects (stomatal closure and leaf area increase), rather than radiative forcing, of rising CO2 are the main driver of amplified regional wetness contrasts, with stronger suppression of evapotranspiration and so larger runoff increases in wet regions than in dry regions. These results underscore the importance of accounting for the physiological forcing of rising CO2 in hydrological change projections, and imply the urgency for future water resource assessments and managements to adapt for an increasing imbalance in regional water resources. Key Points We quantify land water resources change in response to rising CO2 for different wetness levels using a new wetting contrast index We find a substantial amplification of runoff contrast across wetness levels because the runoff increases more in wet than dry regions Vegetation responses to rising CO2 contribute to amplified runoff contrast by suppressing evapotranspiration more in wet than dry regions</description><subject>CO2 physiological forcing</subject><subject>GEOSCIENCES</subject><subject>land water resources</subject><subject>runoff</subject><subject>WWDD</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkE9LAzEQxYMoWKs3P0Dwvjr502RzrKtWYaFQ1B6X7O5sjWyTsomUfnu31IOnebz3m4F5hNwyuGfAzQMHzhYlGMmNOCMTZqTMcgB9TiYwulnOtbokVzF-A4AAwSbEf-IGk00ueLrCuAs-Ik2Brlx0fkOLJafz7a53ncNIi-DTYGOK1Hm6tgmH4074GZoxfMS0R_R00Yfa9nSNiVrf0qfhQMujmA9o4zW56Gwf8eZvTsnHy_N78ZqVy8VbMS-zwJWQmWayVtYCChz_mtVCMcWMMq02nbKinhmlea5FLrVG3bVMjAY0wLSWqmVMTMnd6W6IyVWxcQmbryZ4j02qWD4TgokR4ido73o8VLvBbe1wqBhUxzar_21Wi1WpuFJS_AKATGbk</recordid><startdate>20210728</startdate><enddate>20210728</enddate><creator>Cui, Jiangpeng</creator><creator>Yang, Hui</creator><creator>Huntingford, Chris</creator><creator>Kooperman, Gabriel J.</creator><creator>Lian, Xu</creator><creator>He, Mingzhu</creator><creator>Piao, Shilong</creator><general>American Geophysical Union (AGU)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8057-2292</orcidid><orcidid>https://orcid.org/0000-0002-3174-4913</orcidid><orcidid>https://orcid.org/0000-0001-6454-8954</orcidid><orcidid>https://orcid.org/0000-0003-4587-541X</orcidid><orcidid>https://orcid.org/0000-0002-5941-7770</orcidid><orcidid>https://orcid.org/0000000180572292</orcidid><orcidid>https://orcid.org/0000000231744913</orcidid><orcidid>https://orcid.org/000000034587541X</orcidid><orcidid>https://orcid.org/0000000164548954</orcidid><orcidid>https://orcid.org/0000000259417770</orcidid></search><sort><creationdate>20210728</creationdate><title>Vegetation Response to Rising CO2 Amplifies Contrasts in Water Resources Between Global Wet and Dry Land Areas</title><author>Cui, Jiangpeng ; Yang, Hui ; Huntingford, Chris ; Kooperman, Gabriel J. ; Lian, Xu ; He, Mingzhu ; Piao, Shilong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o2634-714b6aa0e3e0295b36161969d79f6a3b596728738477e7fd139670c017746d113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CO2 physiological forcing</topic><topic>GEOSCIENCES</topic><topic>land water resources</topic><topic>runoff</topic><topic>WWDD</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Jiangpeng</creatorcontrib><creatorcontrib>Yang, Hui</creatorcontrib><creatorcontrib>Huntingford, Chris</creatorcontrib><creatorcontrib>Kooperman, Gabriel J.</creatorcontrib><creatorcontrib>Lian, Xu</creatorcontrib><creatorcontrib>He, Mingzhu</creatorcontrib><creatorcontrib>Piao, Shilong</creatorcontrib><creatorcontrib>Univ. of Georgia, Athens, GA (United States)</creatorcontrib><creatorcontrib>Univ. of Washington, Seattle, WA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Jiangpeng</au><au>Yang, Hui</au><au>Huntingford, Chris</au><au>Kooperman, Gabriel J.</au><au>Lian, Xu</au><au>He, Mingzhu</au><au>Piao, Shilong</au><aucorp>Univ. of Georgia, Athens, GA (United States)</aucorp><aucorp>Univ. of Washington, Seattle, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vegetation Response to Rising CO2 Amplifies Contrasts in Water Resources Between Global Wet and Dry Land Areas</atitle><jtitle>Geophysical research letters</jtitle><date>2021-07-28</date><risdate>2021</risdate><volume>48</volume><issue>14</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Rising atmospheric CO2 impacts on vegetation physiological processes can alter land feedbacks on precipitation and water resources, but understanding of regional differences in these changes is uncertain. We investigate the impact of rising CO2 on land water resources for different wetness levels using four Earth system models. We find an overall tendency of runoff to increase across all wetness levels. However, runoff increases in wet regions are much larger than those in dry regions, especially in wet seasons. This substantial amplification of contrasts between wet and dry regions increases at 3% per 100 ppm increase in CO2 relative to the historical period, reaching 18% for a quadrupling of CO2, quantified by a new wetting contrast index (WCI). Physiological effects suppress evapotranspiration more in wet than dry regions, which has a larger contribution than radiative forcing to the amplification of runoff contrast, reshaping the spatial distribution of future land water resources. Plain Language Summary Increasing atmospheric CO2 concentration is expected to intensify the global water cycle and reshape the regional distribution of water resources. Using specialized simulations from four Earth system models, this study shows that physiological effects (stomatal closure and leaf area increase), rather than radiative forcing, of rising CO2 are the main driver of amplified regional wetness contrasts, with stronger suppression of evapotranspiration and so larger runoff increases in wet regions than in dry regions. These results underscore the importance of accounting for the physiological forcing of rising CO2 in hydrological change projections, and imply the urgency for future water resource assessments and managements to adapt for an increasing imbalance in regional water resources. Key Points We quantify land water resources change in response to rising CO2 for different wetness levels using a new wetting contrast index We find a substantial amplification of runoff contrast across wetness levels because the runoff increases more in wet than dry regions Vegetation responses to rising CO2 contribute to amplified runoff contrast by suppressing evapotranspiration more in wet than dry regions</abstract><cop>United States</cop><pub>American Geophysical Union (AGU)</pub><doi>10.1029/2021GL094293</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8057-2292</orcidid><orcidid>https://orcid.org/0000-0002-3174-4913</orcidid><orcidid>https://orcid.org/0000-0001-6454-8954</orcidid><orcidid>https://orcid.org/0000-0003-4587-541X</orcidid><orcidid>https://orcid.org/0000-0002-5941-7770</orcidid><orcidid>https://orcid.org/0000000180572292</orcidid><orcidid>https://orcid.org/0000000231744913</orcidid><orcidid>https://orcid.org/000000034587541X</orcidid><orcidid>https://orcid.org/0000000164548954</orcidid><orcidid>https://orcid.org/0000000259417770</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2021-07, Vol.48 (14), p.n/a
issn 0094-8276
1944-8007
language eng
recordid cdi_osti_scitechconnect_1853313
source Wiley Online Library; Free E-Journal (出版社公開部分のみ); Wiley-Blackwell AGU Digital Archive; Wiley Online Library (Online service)
subjects CO2 physiological forcing
GEOSCIENCES
land water resources
runoff
WWDD
title Vegetation Response to Rising CO2 Amplifies Contrasts in Water Resources Between Global Wet and Dry Land Areas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A17%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vegetation%20Response%20to%20Rising%20CO2%20Amplifies%20Contrasts%20in%20Water%20Resources%20Between%20Global%20Wet%20and%20Dry%20Land%20Areas&rft.jtitle=Geophysical%20research%20letters&rft.au=Cui,%20Jiangpeng&rft.aucorp=Univ.%20of%20Georgia,%20Athens,%20GA%20(United%20States)&rft.date=2021-07-28&rft.volume=48&rft.issue=14&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2021GL094293&rft_dat=%3Cwiley_osti_%3EGRL62664%3C/wiley_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true