Programmable hyperbolic polaritons in van der Waals semiconductors

Lighting a route for hyperbolic dispersion The propagation of light within a material is usually well defined, with the propagation described by scattering and dispersion. In artificially designed metamaterials and in anisotropic layered materials, the dispersion can be hyperbolic, giving rise to su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2021-02, Vol.371 (6529)
Hauptverfasser: Sternbach, A. J., Chae, S. H., Latini, S., Rikhter, A. A., Shao, Y., Li, B., Rhodes, D., Kim, B., Schuck, P. J., Xu, X., Zhu, X. -Y., Averitt, R. D., Hone, J., Fogler, M. M., Rubio, A., Basov, D. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6529
container_start_page
container_title Science (American Association for the Advancement of Science)
container_volume 371
creator Sternbach, A. J.
Chae, S. H.
Latini, S.
Rikhter, A. A.
Shao, Y.
Li, B.
Rhodes, D.
Kim, B.
Schuck, P. J.
Xu, X.
Zhu, X. -Y.
Averitt, R. D.
Hone, J.
Fogler, M. M.
Rubio, A.
Basov, D. N.
description Lighting a route for hyperbolic dispersion The propagation of light within a material is usually well defined, with the propagation described by scattering and dispersion. In artificially designed metamaterials and in anisotropic layered materials, the dispersion can be hyperbolic, giving rise to subwavelength confinement of the light. Sternbachet al.show that the hyperbolic dispersion can be optically switched on and off on demand in the layered transition metal dichalcogenide tungsten diselenide (see the Perspective by Deng and Chen). Illuminating the material with ultrafast pulses of sub-bandgap light creates a transient waveguide, resulting in hyperbolic dispersion in the material. The ability to tune the dispersion characteristics on demand using optical pumping is an effective approach for developing ultrafast switching photonic devices and controlling the propagation of light on the nanoscale. Science, this issue p.617; see also p.572
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1853269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1853269</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18532693</originalsourceid><addsrcrecordid>eNqNirEKwjAUAIMoWKv_ENwLrw2tzaoojg6CY0nTp42kScmLgn9vBz_A6eDuZizJQZaZLEDMWQIgqqyGXblkK6InwNSkSNj-EvwjqGFQrUXef0YMrbdG89FbFUz0jrhx_K0c7zDwm1KWOOFgtHfdS0cfaM0W98ni5seUbU_H6-GceYqmIW0i6n7aHerY5HUpikqKv6Yvoug72Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Programmable hyperbolic polaritons in van der Waals semiconductors</title><source>American Association for the Advancement of Science</source><creator>Sternbach, A. J. ; Chae, S. H. ; Latini, S. ; Rikhter, A. A. ; Shao, Y. ; Li, B. ; Rhodes, D. ; Kim, B. ; Schuck, P. J. ; Xu, X. ; Zhu, X. -Y. ; Averitt, R. D. ; Hone, J. ; Fogler, M. M. ; Rubio, A. ; Basov, D. N.</creator><creatorcontrib>Sternbach, A. J. ; Chae, S. H. ; Latini, S. ; Rikhter, A. A. ; Shao, Y. ; Li, B. ; Rhodes, D. ; Kim, B. ; Schuck, P. J. ; Xu, X. ; Zhu, X. -Y. ; Averitt, R. D. ; Hone, J. ; Fogler, M. M. ; Rubio, A. ; Basov, D. N. ; Columbia Univ., New York, NY (United States)</creatorcontrib><description>Lighting a route for hyperbolic dispersion The propagation of light within a material is usually well defined, with the propagation described by scattering and dispersion. In artificially designed metamaterials and in anisotropic layered materials, the dispersion can be hyperbolic, giving rise to subwavelength confinement of the light. Sternbachet al.show that the hyperbolic dispersion can be optically switched on and off on demand in the layered transition metal dichalcogenide tungsten diselenide (see the Perspective by Deng and Chen). Illuminating the material with ultrafast pulses of sub-bandgap light creates a transient waveguide, resulting in hyperbolic dispersion in the material. The ability to tune the dispersion characteristics on demand using optical pumping is an effective approach for developing ultrafast switching photonic devices and controlling the propagation of light on the nanoscale. Science, this issue p.&lt;related-article ext-link-type='doi' href='10.1126/science.abe9163' issue='6529' page='617' related-article-type='in-this-issue' vol='371'&gt;617&lt;/related-article&gt;; see also p.&lt;related-article ext-link-type='doi' href='10.1126/science.abf7933' issue='6529' page='572' related-article-type='in-this-issue' vol='371'&gt;572&lt;/related-article&gt;</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><language>eng</language><publisher>United States: AAAS</publisher><subject>Science &amp; Technology - Other Topics</subject><ispartof>Science (American Association for the Advancement of Science), 2021-02, Vol.371 (6529)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000228910028 ; 000000029464889X ; 0000000195535259 ; 0000000320603151 ; 0000000197855387 ; 0000000303482095 ; 0000000296125371 ; 0000000216029452 ; 0000000223456735 ; 0000000280843301 ; 0000000182397221 ; 0000000192442671 ; 0000000220908484</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1853269$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sternbach, A. J.</creatorcontrib><creatorcontrib>Chae, S. H.</creatorcontrib><creatorcontrib>Latini, S.</creatorcontrib><creatorcontrib>Rikhter, A. A.</creatorcontrib><creatorcontrib>Shao, Y.</creatorcontrib><creatorcontrib>Li, B.</creatorcontrib><creatorcontrib>Rhodes, D.</creatorcontrib><creatorcontrib>Kim, B.</creatorcontrib><creatorcontrib>Schuck, P. J.</creatorcontrib><creatorcontrib>Xu, X.</creatorcontrib><creatorcontrib>Zhu, X. -Y.</creatorcontrib><creatorcontrib>Averitt, R. D.</creatorcontrib><creatorcontrib>Hone, J.</creatorcontrib><creatorcontrib>Fogler, M. M.</creatorcontrib><creatorcontrib>Rubio, A.</creatorcontrib><creatorcontrib>Basov, D. N.</creatorcontrib><creatorcontrib>Columbia Univ., New York, NY (United States)</creatorcontrib><title>Programmable hyperbolic polaritons in van der Waals semiconductors</title><title>Science (American Association for the Advancement of Science)</title><description>Lighting a route for hyperbolic dispersion The propagation of light within a material is usually well defined, with the propagation described by scattering and dispersion. In artificially designed metamaterials and in anisotropic layered materials, the dispersion can be hyperbolic, giving rise to subwavelength confinement of the light. Sternbachet al.show that the hyperbolic dispersion can be optically switched on and off on demand in the layered transition metal dichalcogenide tungsten diselenide (see the Perspective by Deng and Chen). Illuminating the material with ultrafast pulses of sub-bandgap light creates a transient waveguide, resulting in hyperbolic dispersion in the material. The ability to tune the dispersion characteristics on demand using optical pumping is an effective approach for developing ultrafast switching photonic devices and controlling the propagation of light on the nanoscale. Science, this issue p.&lt;related-article ext-link-type='doi' href='10.1126/science.abe9163' issue='6529' page='617' related-article-type='in-this-issue' vol='371'&gt;617&lt;/related-article&gt;; see also p.&lt;related-article ext-link-type='doi' href='10.1126/science.abf7933' issue='6529' page='572' related-article-type='in-this-issue' vol='371'&gt;572&lt;/related-article&gt;</description><subject>Science &amp; Technology - Other Topics</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNirEKwjAUAIMoWKv_ENwLrw2tzaoojg6CY0nTp42kScmLgn9vBz_A6eDuZizJQZaZLEDMWQIgqqyGXblkK6InwNSkSNj-EvwjqGFQrUXef0YMrbdG89FbFUz0jrhx_K0c7zDwm1KWOOFgtHfdS0cfaM0W98ni5seUbU_H6-GceYqmIW0i6n7aHerY5HUpikqKv6Yvoug72Q</recordid><startdate>20210205</startdate><enddate>20210205</enddate><creator>Sternbach, A. J.</creator><creator>Chae, S. H.</creator><creator>Latini, S.</creator><creator>Rikhter, A. A.</creator><creator>Shao, Y.</creator><creator>Li, B.</creator><creator>Rhodes, D.</creator><creator>Kim, B.</creator><creator>Schuck, P. J.</creator><creator>Xu, X.</creator><creator>Zhu, X. -Y.</creator><creator>Averitt, R. D.</creator><creator>Hone, J.</creator><creator>Fogler, M. M.</creator><creator>Rubio, A.</creator><creator>Basov, D. N.</creator><general>AAAS</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000228910028</orcidid><orcidid>https://orcid.org/000000029464889X</orcidid><orcidid>https://orcid.org/0000000195535259</orcidid><orcidid>https://orcid.org/0000000320603151</orcidid><orcidid>https://orcid.org/0000000197855387</orcidid><orcidid>https://orcid.org/0000000303482095</orcidid><orcidid>https://orcid.org/0000000296125371</orcidid><orcidid>https://orcid.org/0000000216029452</orcidid><orcidid>https://orcid.org/0000000223456735</orcidid><orcidid>https://orcid.org/0000000280843301</orcidid><orcidid>https://orcid.org/0000000182397221</orcidid><orcidid>https://orcid.org/0000000192442671</orcidid><orcidid>https://orcid.org/0000000220908484</orcidid></search><sort><creationdate>20210205</creationdate><title>Programmable hyperbolic polaritons in van der Waals semiconductors</title><author>Sternbach, A. J. ; Chae, S. H. ; Latini, S. ; Rikhter, A. A. ; Shao, Y. ; Li, B. ; Rhodes, D. ; Kim, B. ; Schuck, P. J. ; Xu, X. ; Zhu, X. -Y. ; Averitt, R. D. ; Hone, J. ; Fogler, M. M. ; Rubio, A. ; Basov, D. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18532693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Science &amp; Technology - Other Topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sternbach, A. J.</creatorcontrib><creatorcontrib>Chae, S. H.</creatorcontrib><creatorcontrib>Latini, S.</creatorcontrib><creatorcontrib>Rikhter, A. A.</creatorcontrib><creatorcontrib>Shao, Y.</creatorcontrib><creatorcontrib>Li, B.</creatorcontrib><creatorcontrib>Rhodes, D.</creatorcontrib><creatorcontrib>Kim, B.</creatorcontrib><creatorcontrib>Schuck, P. J.</creatorcontrib><creatorcontrib>Xu, X.</creatorcontrib><creatorcontrib>Zhu, X. -Y.</creatorcontrib><creatorcontrib>Averitt, R. D.</creatorcontrib><creatorcontrib>Hone, J.</creatorcontrib><creatorcontrib>Fogler, M. M.</creatorcontrib><creatorcontrib>Rubio, A.</creatorcontrib><creatorcontrib>Basov, D. N.</creatorcontrib><creatorcontrib>Columbia Univ., New York, NY (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sternbach, A. J.</au><au>Chae, S. H.</au><au>Latini, S.</au><au>Rikhter, A. A.</au><au>Shao, Y.</au><au>Li, B.</au><au>Rhodes, D.</au><au>Kim, B.</au><au>Schuck, P. J.</au><au>Xu, X.</au><au>Zhu, X. -Y.</au><au>Averitt, R. D.</au><au>Hone, J.</au><au>Fogler, M. M.</au><au>Rubio, A.</au><au>Basov, D. N.</au><aucorp>Columbia Univ., New York, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Programmable hyperbolic polaritons in van der Waals semiconductors</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2021-02-05</date><risdate>2021</risdate><volume>371</volume><issue>6529</issue><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Lighting a route for hyperbolic dispersion The propagation of light within a material is usually well defined, with the propagation described by scattering and dispersion. In artificially designed metamaterials and in anisotropic layered materials, the dispersion can be hyperbolic, giving rise to subwavelength confinement of the light. Sternbachet al.show that the hyperbolic dispersion can be optically switched on and off on demand in the layered transition metal dichalcogenide tungsten diselenide (see the Perspective by Deng and Chen). Illuminating the material with ultrafast pulses of sub-bandgap light creates a transient waveguide, resulting in hyperbolic dispersion in the material. The ability to tune the dispersion characteristics on demand using optical pumping is an effective approach for developing ultrafast switching photonic devices and controlling the propagation of light on the nanoscale. Science, this issue p.&lt;related-article ext-link-type='doi' href='10.1126/science.abe9163' issue='6529' page='617' related-article-type='in-this-issue' vol='371'&gt;617&lt;/related-article&gt;; see also p.&lt;related-article ext-link-type='doi' href='10.1126/science.abf7933' issue='6529' page='572' related-article-type='in-this-issue' vol='371'&gt;572&lt;/related-article&gt;</abstract><cop>United States</cop><pub>AAAS</pub><orcidid>https://orcid.org/0000000228910028</orcidid><orcidid>https://orcid.org/000000029464889X</orcidid><orcidid>https://orcid.org/0000000195535259</orcidid><orcidid>https://orcid.org/0000000320603151</orcidid><orcidid>https://orcid.org/0000000197855387</orcidid><orcidid>https://orcid.org/0000000303482095</orcidid><orcidid>https://orcid.org/0000000296125371</orcidid><orcidid>https://orcid.org/0000000216029452</orcidid><orcidid>https://orcid.org/0000000223456735</orcidid><orcidid>https://orcid.org/0000000280843301</orcidid><orcidid>https://orcid.org/0000000182397221</orcidid><orcidid>https://orcid.org/0000000192442671</orcidid><orcidid>https://orcid.org/0000000220908484</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2021-02, Vol.371 (6529)
issn 0036-8075
1095-9203
language eng
recordid cdi_osti_scitechconnect_1853269
source American Association for the Advancement of Science
subjects Science & Technology - Other Topics
title Programmable hyperbolic polaritons in van der Waals semiconductors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A57%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Programmable%20hyperbolic%20polaritons%20in%20van%20der%20Waals%20semiconductors&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Sternbach,%20A.%20J.&rft.aucorp=Columbia%20Univ.,%20New%20York,%20NY%20(United%20States)&rft.date=2021-02-05&rft.volume=371&rft.issue=6529&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/&rft_dat=%3Costi%3E1853269%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true