Optogenetic control of the lac operon for bacterial chemical and protein production
Control of the lac operon with isopropyl β- d -1-thiogalactopyranoside (IPTG) has been used to regulate gene expression in Escherichia coli for countless applications, including metabolic engineering and recombinant protein production. However, optogenetics offers unique capabilities, such as easy t...
Gespeichert in:
Veröffentlicht in: | Nature chemical biology 2021-01, Vol.17 (1), p.71-79 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 79 |
---|---|
container_issue | 1 |
container_start_page | 71 |
container_title | Nature chemical biology |
container_volume | 17 |
creator | Lalwani, Makoto A. Ip, Samantha S. Carrasco-López, César Day, Catherine Zhao, Evan M. Kawabe, Hinako Avalos, José L. |
description | Control of the
lac
operon with isopropyl β-
d
-1-thiogalactopyranoside (IPTG) has been used to regulate gene expression in
Escherichia coli
for countless applications, including metabolic engineering and recombinant protein production. However, optogenetics offers unique capabilities, such as easy tunability, reversibility, dynamic induction strength and spatial control, that are difficult to obtain with chemical inducers. We have developed a series of circuits for optogenetic regulation of the
lac
operon, which we call OptoLAC, to control gene expression from various IPTG-inducible promoters using only blue light. Applying them to metabolic engineering improves mevalonate and isobutanol production by 24% and 27% respectively, compared to IPTG induction, in light-controlled fermentations scalable to at least two-litre bioreactors. Furthermore, OptoLAC circuits enable control of recombinant protein production, reaching yields comparable to IPTG induction but with easier tunability of expression. OptoLAC circuits are potentially useful to confer light control over other cell functions originally designed to be IPTG-inducible.
Reengineering of the
lac
operon in
E. coli
from a ligand-inducible to a blue-light-regulated gene expression system facilitates optogenetic control of biotechnological applications including metabolic engineering and protein expression. |
doi_str_mv | 10.1038/s41589-020-0639-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1853121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2440905473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-bc669d6bd1b3489fe75f9e1b4923e591c717aa7500a1d5126e136a8a073085273</originalsourceid><addsrcrecordid>eNp1kU1rFTEUhoNY7If-ADcS7MbNaE6-ZrKUYq1Q6KK6DpnMmd6Uuck1ySz89-YytYLg6hw4T96cw0PIW2AfgYnhU5GgBtMxzjqmhengBTkDpXgnpTYvn3vFTsl5KY-MCa1heEVOBR-MkmY4I_d3h5oeMGINnvoUa04LTTOtO6SL8zQdMKdI55Tp6HzFHNxC_Q73wbfGxYkecqoY4rFOq68hxdfkZHZLwTdP9YL8uP7y_eqmu737-u3q823npVa1G73WZtLjBKOQg5mxV7NBGKXhApUB30PvXK8YczAp4BpBaDc41gs2KN6LC_J-y02lBlt8qOh37YaIvloYlAAODfqwQW2_nyuWaveheFwWFzGtxXIpmWFK9qKhl_-gj2nNsZ3QqDZninPVKNgon1MpGWd7yGHv8i8LzB612E2LbVrsUYs9LvHuKXkd9zg9v_jjoQF8A0obxQfMf7_-f-pvqwGWCw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473305225</pqid></control><display><type>article</type><title>Optogenetic control of the lac operon for bacterial chemical and protein production</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Lalwani, Makoto A. ; Ip, Samantha S. ; Carrasco-López, César ; Day, Catherine ; Zhao, Evan M. ; Kawabe, Hinako ; Avalos, José L.</creator><creatorcontrib>Lalwani, Makoto A. ; Ip, Samantha S. ; Carrasco-López, César ; Day, Catherine ; Zhao, Evan M. ; Kawabe, Hinako ; Avalos, José L. ; Princeton Univ., NJ (United States)</creatorcontrib><description>Control of the
lac
operon with isopropyl β-
d
-1-thiogalactopyranoside (IPTG) has been used to regulate gene expression in
Escherichia coli
for countless applications, including metabolic engineering and recombinant protein production. However, optogenetics offers unique capabilities, such as easy tunability, reversibility, dynamic induction strength and spatial control, that are difficult to obtain with chemical inducers. We have developed a series of circuits for optogenetic regulation of the
lac
operon, which we call OptoLAC, to control gene expression from various IPTG-inducible promoters using only blue light. Applying them to metabolic engineering improves mevalonate and isobutanol production by 24% and 27% respectively, compared to IPTG induction, in light-controlled fermentations scalable to at least two-litre bioreactors. Furthermore, OptoLAC circuits enable control of recombinant protein production, reaching yields comparable to IPTG induction but with easier tunability of expression. OptoLAC circuits are potentially useful to confer light control over other cell functions originally designed to be IPTG-inducible.
Reengineering of the
lac
operon in
E. coli
from a ligand-inducible to a blue-light-regulated gene expression system facilitates optogenetic control of biotechnological applications including metabolic engineering and protein expression.</description><identifier>ISSN: 1552-4450</identifier><identifier>EISSN: 1552-4469</identifier><identifier>DOI: 10.1038/s41589-020-0639-1</identifier><identifier>PMID: 32895498</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/326/252/318 ; 631/553/318 ; 631/553/552 ; Biochemical Engineering ; Biochemistry ; Biochemistry & Molecular Biology ; Bioorganic Chemistry ; Bioreactors ; Biotechnology ; Butanols - metabolism ; Butanols - pharmacology ; Cell Biology ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Circuits ; E coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli - radiation effects ; Gene expression ; Gene Expression Regulation, Bacterial ; Genetics ; Information processing ; Isobutanol ; Isopropyl Thiogalactoside - pharmacology ; Lac Operon - radiation effects ; Lactose operon ; Light ; Light Signal Transduction ; Metabolic engineering ; Metabolic Engineering - methods ; Metabolism ; Mevalonic acid ; Mevalonic Acid - metabolism ; Mevalonic Acid - pharmacology ; Optics ; Optogenetics - methods ; Production controls ; Promoter Regions, Genetic ; Protein engineering ; Proteins ; Reengineering</subject><ispartof>Nature chemical biology, 2021-01, Vol.17 (1), p.71-79</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-bc669d6bd1b3489fe75f9e1b4923e591c717aa7500a1d5126e136a8a073085273</citedby><cites>FETCH-LOGICAL-c465t-bc669d6bd1b3489fe75f9e1b4923e591c717aa7500a1d5126e136a8a073085273</cites><orcidid>0000-0002-5139-544X ; 0000-0002-5485-4023 ; 0000-0002-3853-8776 ; 0000-0002-7209-4208 ; 000000025139544X ; 0000000238538776 ; 0000000254854023 ; 0000000272094208</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41589-020-0639-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41589-020-0639-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,778,782,883,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32895498$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1853121$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lalwani, Makoto A.</creatorcontrib><creatorcontrib>Ip, Samantha S.</creatorcontrib><creatorcontrib>Carrasco-López, César</creatorcontrib><creatorcontrib>Day, Catherine</creatorcontrib><creatorcontrib>Zhao, Evan M.</creatorcontrib><creatorcontrib>Kawabe, Hinako</creatorcontrib><creatorcontrib>Avalos, José L.</creatorcontrib><creatorcontrib>Princeton Univ., NJ (United States)</creatorcontrib><title>Optogenetic control of the lac operon for bacterial chemical and protein production</title><title>Nature chemical biology</title><addtitle>Nat Chem Biol</addtitle><addtitle>Nat Chem Biol</addtitle><description>Control of the
lac
operon with isopropyl β-
d
-1-thiogalactopyranoside (IPTG) has been used to regulate gene expression in
Escherichia coli
for countless applications, including metabolic engineering and recombinant protein production. However, optogenetics offers unique capabilities, such as easy tunability, reversibility, dynamic induction strength and spatial control, that are difficult to obtain with chemical inducers. We have developed a series of circuits for optogenetic regulation of the
lac
operon, which we call OptoLAC, to control gene expression from various IPTG-inducible promoters using only blue light. Applying them to metabolic engineering improves mevalonate and isobutanol production by 24% and 27% respectively, compared to IPTG induction, in light-controlled fermentations scalable to at least two-litre bioreactors. Furthermore, OptoLAC circuits enable control of recombinant protein production, reaching yields comparable to IPTG induction but with easier tunability of expression. OptoLAC circuits are potentially useful to confer light control over other cell functions originally designed to be IPTG-inducible.
Reengineering of the
lac
operon in
E. coli
from a ligand-inducible to a blue-light-regulated gene expression system facilitates optogenetic control of biotechnological applications including metabolic engineering and protein expression.</description><subject>631/326/252/318</subject><subject>631/553/318</subject><subject>631/553/552</subject><subject>Biochemical Engineering</subject><subject>Biochemistry</subject><subject>Biochemistry & Molecular Biology</subject><subject>Bioorganic Chemistry</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>Butanols - metabolism</subject><subject>Butanols - pharmacology</subject><subject>Cell Biology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Circuits</subject><subject>E coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli - radiation effects</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genetics</subject><subject>Information processing</subject><subject>Isobutanol</subject><subject>Isopropyl Thiogalactoside - pharmacology</subject><subject>Lac Operon - radiation effects</subject><subject>Lactose operon</subject><subject>Light</subject><subject>Light Signal Transduction</subject><subject>Metabolic engineering</subject><subject>Metabolic Engineering - methods</subject><subject>Metabolism</subject><subject>Mevalonic acid</subject><subject>Mevalonic Acid - metabolism</subject><subject>Mevalonic Acid - pharmacology</subject><subject>Optics</subject><subject>Optogenetics - methods</subject><subject>Production controls</subject><subject>Promoter Regions, Genetic</subject><subject>Protein engineering</subject><subject>Proteins</subject><subject>Reengineering</subject><issn>1552-4450</issn><issn>1552-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1rFTEUhoNY7If-ADcS7MbNaE6-ZrKUYq1Q6KK6DpnMmd6Uuck1ySz89-YytYLg6hw4T96cw0PIW2AfgYnhU5GgBtMxzjqmhengBTkDpXgnpTYvn3vFTsl5KY-MCa1heEVOBR-MkmY4I_d3h5oeMGINnvoUa04LTTOtO6SL8zQdMKdI55Tp6HzFHNxC_Q73wbfGxYkecqoY4rFOq68hxdfkZHZLwTdP9YL8uP7y_eqmu737-u3q823npVa1G73WZtLjBKOQg5mxV7NBGKXhApUB30PvXK8YczAp4BpBaDc41gs2KN6LC_J-y02lBlt8qOh37YaIvloYlAAODfqwQW2_nyuWaveheFwWFzGtxXIpmWFK9qKhl_-gj2nNsZ3QqDZninPVKNgon1MpGWd7yGHv8i8LzB612E2LbVrsUYs9LvHuKXkd9zg9v_jjoQF8A0obxQfMf7_-f-pvqwGWCw</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Lalwani, Makoto A.</creator><creator>Ip, Samantha S.</creator><creator>Carrasco-López, César</creator><creator>Day, Catherine</creator><creator>Zhao, Evan M.</creator><creator>Kawabe, Hinako</creator><creator>Avalos, José L.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5139-544X</orcidid><orcidid>https://orcid.org/0000-0002-5485-4023</orcidid><orcidid>https://orcid.org/0000-0002-3853-8776</orcidid><orcidid>https://orcid.org/0000-0002-7209-4208</orcidid><orcidid>https://orcid.org/000000025139544X</orcidid><orcidid>https://orcid.org/0000000238538776</orcidid><orcidid>https://orcid.org/0000000254854023</orcidid><orcidid>https://orcid.org/0000000272094208</orcidid></search><sort><creationdate>20210101</creationdate><title>Optogenetic control of the lac operon for bacterial chemical and protein production</title><author>Lalwani, Makoto A. ; Ip, Samantha S. ; Carrasco-López, César ; Day, Catherine ; Zhao, Evan M. ; Kawabe, Hinako ; Avalos, José L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-bc669d6bd1b3489fe75f9e1b4923e591c717aa7500a1d5126e136a8a073085273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/326/252/318</topic><topic>631/553/318</topic><topic>631/553/552</topic><topic>Biochemical Engineering</topic><topic>Biochemistry</topic><topic>Biochemistry & Molecular Biology</topic><topic>Bioorganic Chemistry</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>Butanols - metabolism</topic><topic>Butanols - pharmacology</topic><topic>Cell Biology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Circuits</topic><topic>E coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli - radiation effects</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genetics</topic><topic>Information processing</topic><topic>Isobutanol</topic><topic>Isopropyl Thiogalactoside - pharmacology</topic><topic>Lac Operon - radiation effects</topic><topic>Lactose operon</topic><topic>Light</topic><topic>Light Signal Transduction</topic><topic>Metabolic engineering</topic><topic>Metabolic Engineering - methods</topic><topic>Metabolism</topic><topic>Mevalonic acid</topic><topic>Mevalonic Acid - metabolism</topic><topic>Mevalonic Acid - pharmacology</topic><topic>Optics</topic><topic>Optogenetics - methods</topic><topic>Production controls</topic><topic>Promoter Regions, Genetic</topic><topic>Protein engineering</topic><topic>Proteins</topic><topic>Reengineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lalwani, Makoto A.</creatorcontrib><creatorcontrib>Ip, Samantha S.</creatorcontrib><creatorcontrib>Carrasco-López, César</creatorcontrib><creatorcontrib>Day, Catherine</creatorcontrib><creatorcontrib>Zhao, Evan M.</creatorcontrib><creatorcontrib>Kawabe, Hinako</creatorcontrib><creatorcontrib>Avalos, José L.</creatorcontrib><creatorcontrib>Princeton Univ., NJ (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nature chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lalwani, Makoto A.</au><au>Ip, Samantha S.</au><au>Carrasco-López, César</au><au>Day, Catherine</au><au>Zhao, Evan M.</au><au>Kawabe, Hinako</au><au>Avalos, José L.</au><aucorp>Princeton Univ., NJ (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optogenetic control of the lac operon for bacterial chemical and protein production</atitle><jtitle>Nature chemical biology</jtitle><stitle>Nat Chem Biol</stitle><addtitle>Nat Chem Biol</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>17</volume><issue>1</issue><spage>71</spage><epage>79</epage><pages>71-79</pages><issn>1552-4450</issn><eissn>1552-4469</eissn><abstract>Control of the
lac
operon with isopropyl β-
d
-1-thiogalactopyranoside (IPTG) has been used to regulate gene expression in
Escherichia coli
for countless applications, including metabolic engineering and recombinant protein production. However, optogenetics offers unique capabilities, such as easy tunability, reversibility, dynamic induction strength and spatial control, that are difficult to obtain with chemical inducers. We have developed a series of circuits for optogenetic regulation of the
lac
operon, which we call OptoLAC, to control gene expression from various IPTG-inducible promoters using only blue light. Applying them to metabolic engineering improves mevalonate and isobutanol production by 24% and 27% respectively, compared to IPTG induction, in light-controlled fermentations scalable to at least two-litre bioreactors. Furthermore, OptoLAC circuits enable control of recombinant protein production, reaching yields comparable to IPTG induction but with easier tunability of expression. OptoLAC circuits are potentially useful to confer light control over other cell functions originally designed to be IPTG-inducible.
Reengineering of the
lac
operon in
E. coli
from a ligand-inducible to a blue-light-regulated gene expression system facilitates optogenetic control of biotechnological applications including metabolic engineering and protein expression.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32895498</pmid><doi>10.1038/s41589-020-0639-1</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5139-544X</orcidid><orcidid>https://orcid.org/0000-0002-5485-4023</orcidid><orcidid>https://orcid.org/0000-0002-3853-8776</orcidid><orcidid>https://orcid.org/0000-0002-7209-4208</orcidid><orcidid>https://orcid.org/000000025139544X</orcidid><orcidid>https://orcid.org/0000000238538776</orcidid><orcidid>https://orcid.org/0000000254854023</orcidid><orcidid>https://orcid.org/0000000272094208</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4450 |
ispartof | Nature chemical biology, 2021-01, Vol.17 (1), p.71-79 |
issn | 1552-4450 1552-4469 |
language | eng |
recordid | cdi_osti_scitechconnect_1853121 |
source | MEDLINE; SpringerLink Journals; Nature |
subjects | 631/326/252/318 631/553/318 631/553/552 Biochemical Engineering Biochemistry Biochemistry & Molecular Biology Bioorganic Chemistry Bioreactors Biotechnology Butanols - metabolism Butanols - pharmacology Cell Biology Chemistry Chemistry and Materials Science Chemistry/Food Science Circuits E coli Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli - radiation effects Gene expression Gene Expression Regulation, Bacterial Genetics Information processing Isobutanol Isopropyl Thiogalactoside - pharmacology Lac Operon - radiation effects Lactose operon Light Light Signal Transduction Metabolic engineering Metabolic Engineering - methods Metabolism Mevalonic acid Mevalonic Acid - metabolism Mevalonic Acid - pharmacology Optics Optogenetics - methods Production controls Promoter Regions, Genetic Protein engineering Proteins Reengineering |
title | Optogenetic control of the lac operon for bacterial chemical and protein production |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T05%3A03%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optogenetic%20control%20of%20the%20lac%20operon%20for%20bacterial%20chemical%20and%20protein%20production&rft.jtitle=Nature%20chemical%20biology&rft.au=Lalwani,%20Makoto%20A.&rft.aucorp=Princeton%20Univ.,%20NJ%20(United%20States)&rft.date=2021-01-01&rft.volume=17&rft.issue=1&rft.spage=71&rft.epage=79&rft.pages=71-79&rft.issn=1552-4450&rft.eissn=1552-4469&rft_id=info:doi/10.1038/s41589-020-0639-1&rft_dat=%3Cproquest_osti_%3E2440905473%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473305225&rft_id=info:pmid/32895498&rfr_iscdi=true |