Topological Defect Engineering and $\mathcal{PT}$ Symmetry in Non-Hermitian Electrical Circuits

In this work, we employ electric circuit networks to study topological states of matter in non-Hermitian systems enriched by parity-time symmetry $\mathcal{PT}$ and chiral symmetry anti-$\mathcal{PT (APT)}$. The topological structure manifests itself in the complex admittance bands which yields exce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2021-05, Vol.126 (21)
Hauptverfasser: Stegmaier, Alexander, Imhof, Stefan, Helbig, Tobias, Hofmann, Tobias, Lee, Ching Hua, Kremer, Mark, Fritzsche, Alexander, Feichtner, Thorsten, Klembt, Sebastian, Höfling, Sven, Boettcher, Igor, Fulga, Ion Cosma, Ma, Libo, Schmidt, Oliver G., Greiter, Martin, Kiessling, Tobias, Szameit, Alexander, Thomale, Ronny
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page
container_title Physical review letters
container_volume 126
creator Stegmaier, Alexander
Imhof, Stefan
Helbig, Tobias
Hofmann, Tobias
Lee, Ching Hua
Kremer, Mark
Fritzsche, Alexander
Feichtner, Thorsten
Klembt, Sebastian
Höfling, Sven
Boettcher, Igor
Fulga, Ion Cosma
Ma, Libo
Schmidt, Oliver G.
Greiter, Martin
Kiessling, Tobias
Szameit, Alexander
Thomale, Ronny
description In this work, we employ electric circuit networks to study topological states of matter in non-Hermitian systems enriched by parity-time symmetry $\mathcal{PT}$ and chiral symmetry anti-$\mathcal{PT (APT)}$. The topological structure manifests itself in the complex admittance bands which yields excellent measurability and signal to noise ratio. We analyze the impact of $\mathcal{PT}$-symmetric gain and loss on localized edge and defect states in a non-Hermitian Su-Schrieffer-Heeger (SSH) circuit. We realize all three symmetry phases of the system, including the $\mathcal{APT}$-symmetric regime that occurs at large gain and loss. We measure the admittance spectrum and eigenstates for arbitrary boundary conditions, which allows us to resolve not only topological edge states, but also a novel $\mathcal{PT}$-symmetric $\mathbb{Z}_2$ invariant of the bulk. We discover the distinct properties of topological edge states and defect states in the phase diagram. In the regime that is not $\mathcal{PT}$ symmetric, the topological defect state disappears and only reemerges when $\mathcal{APT}$ symmetry is reached, while the topological edge states always prevail and only experience a shift in eigenvalue. Our findings unveil a future route for topological defect engineering and tuning in non-Hermitian systems of arbitrary dimension.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1852783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1852783</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18527833</originalsourceid><addsrcrecordid>eNqNjLsKwjAUQDMoWB__EKRrIW3R1rlWnESwo1BCvG2vNDeSxKGI_24RP8DpLOecCQuESONoJ0Q2Y3Pn7kKIONnmAasr8zC9aVHJnu-hAeV5SS0SgEVquaQbD69a-m4UXufqHfLLoDV4O3AkfjIUHcFq9CiJl_2Y2--qQKue6N2STRvZO1j9uGDrQ1kVx8g4j7VT6EF1yhCNZR3nmyTL0_Qv6QN7rkOx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Topological Defect Engineering and $\mathcal{PT}$ Symmetry in Non-Hermitian Electrical Circuits</title><source>American Physical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Stegmaier, Alexander ; Imhof, Stefan ; Helbig, Tobias ; Hofmann, Tobias ; Lee, Ching Hua ; Kremer, Mark ; Fritzsche, Alexander ; Feichtner, Thorsten ; Klembt, Sebastian ; Höfling, Sven ; Boettcher, Igor ; Fulga, Ion Cosma ; Ma, Libo ; Schmidt, Oliver G. ; Greiter, Martin ; Kiessling, Tobias ; Szameit, Alexander ; Thomale, Ronny</creator><creatorcontrib>Stegmaier, Alexander ; Imhof, Stefan ; Helbig, Tobias ; Hofmann, Tobias ; Lee, Ching Hua ; Kremer, Mark ; Fritzsche, Alexander ; Feichtner, Thorsten ; Klembt, Sebastian ; Höfling, Sven ; Boettcher, Igor ; Fulga, Ion Cosma ; Ma, Libo ; Schmidt, Oliver G. ; Greiter, Martin ; Kiessling, Tobias ; Szameit, Alexander ; Thomale, Ronny ; Univ. of Maryland, College Park, MD (United States) ; Duke Univ., Durham, NC (United States)</creatorcontrib><description>In this work, we employ electric circuit networks to study topological states of matter in non-Hermitian systems enriched by parity-time symmetry $\mathcal{PT}$ and chiral symmetry anti-$\mathcal{PT (APT)}$. The topological structure manifests itself in the complex admittance bands which yields excellent measurability and signal to noise ratio. We analyze the impact of $\mathcal{PT}$-symmetric gain and loss on localized edge and defect states in a non-Hermitian Su-Schrieffer-Heeger (SSH) circuit. We realize all three symmetry phases of the system, including the $\mathcal{APT}$-symmetric regime that occurs at large gain and loss. We measure the admittance spectrum and eigenstates for arbitrary boundary conditions, which allows us to resolve not only topological edge states, but also a novel $\mathcal{PT}$-symmetric $\mathbb{Z}_2$ invariant of the bulk. We discover the distinct properties of topological edge states and defect states in the phase diagram. In the regime that is not $\mathcal{PT}$ symmetric, the topological defect state disappears and only reemerges when $\mathcal{APT}$ symmetry is reached, while the topological edge states always prevail and only experience a shift in eigenvalue. Our findings unveil a future route for topological defect engineering and tuning in non-Hermitian systems of arbitrary dimension.</description><identifier>ISSN: 0031-9007</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Physics</subject><ispartof>Physical review letters, 2021-05, Vol.126 (21)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000243878708 ; 0000000306903238 ; 0000000239798836 ; 0000000320084013 ; 0000000206056481 ; 0000000325977259 ; 0000000288645182</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1852783$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Stegmaier, Alexander</creatorcontrib><creatorcontrib>Imhof, Stefan</creatorcontrib><creatorcontrib>Helbig, Tobias</creatorcontrib><creatorcontrib>Hofmann, Tobias</creatorcontrib><creatorcontrib>Lee, Ching Hua</creatorcontrib><creatorcontrib>Kremer, Mark</creatorcontrib><creatorcontrib>Fritzsche, Alexander</creatorcontrib><creatorcontrib>Feichtner, Thorsten</creatorcontrib><creatorcontrib>Klembt, Sebastian</creatorcontrib><creatorcontrib>Höfling, Sven</creatorcontrib><creatorcontrib>Boettcher, Igor</creatorcontrib><creatorcontrib>Fulga, Ion Cosma</creatorcontrib><creatorcontrib>Ma, Libo</creatorcontrib><creatorcontrib>Schmidt, Oliver G.</creatorcontrib><creatorcontrib>Greiter, Martin</creatorcontrib><creatorcontrib>Kiessling, Tobias</creatorcontrib><creatorcontrib>Szameit, Alexander</creatorcontrib><creatorcontrib>Thomale, Ronny</creatorcontrib><creatorcontrib>Univ. of Maryland, College Park, MD (United States)</creatorcontrib><creatorcontrib>Duke Univ., Durham, NC (United States)</creatorcontrib><title>Topological Defect Engineering and $\mathcal{PT}$ Symmetry in Non-Hermitian Electrical Circuits</title><title>Physical review letters</title><description>In this work, we employ electric circuit networks to study topological states of matter in non-Hermitian systems enriched by parity-time symmetry $\mathcal{PT}$ and chiral symmetry anti-$\mathcal{PT (APT)}$. The topological structure manifests itself in the complex admittance bands which yields excellent measurability and signal to noise ratio. We analyze the impact of $\mathcal{PT}$-symmetric gain and loss on localized edge and defect states in a non-Hermitian Su-Schrieffer-Heeger (SSH) circuit. We realize all three symmetry phases of the system, including the $\mathcal{APT}$-symmetric regime that occurs at large gain and loss. We measure the admittance spectrum and eigenstates for arbitrary boundary conditions, which allows us to resolve not only topological edge states, but also a novel $\mathcal{PT}$-symmetric $\mathbb{Z}_2$ invariant of the bulk. We discover the distinct properties of topological edge states and defect states in the phase diagram. In the regime that is not $\mathcal{PT}$ symmetric, the topological defect state disappears and only reemerges when $\mathcal{APT}$ symmetry is reached, while the topological edge states always prevail and only experience a shift in eigenvalue. Our findings unveil a future route for topological defect engineering and tuning in non-Hermitian systems of arbitrary dimension.</description><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Physics</subject><issn>0031-9007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNjLsKwjAUQDMoWB__EKRrIW3R1rlWnESwo1BCvG2vNDeSxKGI_24RP8DpLOecCQuESONoJ0Q2Y3Pn7kKIONnmAasr8zC9aVHJnu-hAeV5SS0SgEVquaQbD69a-m4UXufqHfLLoDV4O3AkfjIUHcFq9CiJl_2Y2--qQKue6N2STRvZO1j9uGDrQ1kVx8g4j7VT6EF1yhCNZR3nmyTL0_Qv6QN7rkOx</recordid><startdate>20210528</startdate><enddate>20210528</enddate><creator>Stegmaier, Alexander</creator><creator>Imhof, Stefan</creator><creator>Helbig, Tobias</creator><creator>Hofmann, Tobias</creator><creator>Lee, Ching Hua</creator><creator>Kremer, Mark</creator><creator>Fritzsche, Alexander</creator><creator>Feichtner, Thorsten</creator><creator>Klembt, Sebastian</creator><creator>Höfling, Sven</creator><creator>Boettcher, Igor</creator><creator>Fulga, Ion Cosma</creator><creator>Ma, Libo</creator><creator>Schmidt, Oliver G.</creator><creator>Greiter, Martin</creator><creator>Kiessling, Tobias</creator><creator>Szameit, Alexander</creator><creator>Thomale, Ronny</creator><general>American Physical Society (APS)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000243878708</orcidid><orcidid>https://orcid.org/0000000306903238</orcidid><orcidid>https://orcid.org/0000000239798836</orcidid><orcidid>https://orcid.org/0000000320084013</orcidid><orcidid>https://orcid.org/0000000206056481</orcidid><orcidid>https://orcid.org/0000000325977259</orcidid><orcidid>https://orcid.org/0000000288645182</orcidid></search><sort><creationdate>20210528</creationdate><title>Topological Defect Engineering and $\mathcal{PT}$ Symmetry in Non-Hermitian Electrical Circuits</title><author>Stegmaier, Alexander ; Imhof, Stefan ; Helbig, Tobias ; Hofmann, Tobias ; Lee, Ching Hua ; Kremer, Mark ; Fritzsche, Alexander ; Feichtner, Thorsten ; Klembt, Sebastian ; Höfling, Sven ; Boettcher, Igor ; Fulga, Ion Cosma ; Ma, Libo ; Schmidt, Oliver G. ; Greiter, Martin ; Kiessling, Tobias ; Szameit, Alexander ; Thomale, Ronny</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18527833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stegmaier, Alexander</creatorcontrib><creatorcontrib>Imhof, Stefan</creatorcontrib><creatorcontrib>Helbig, Tobias</creatorcontrib><creatorcontrib>Hofmann, Tobias</creatorcontrib><creatorcontrib>Lee, Ching Hua</creatorcontrib><creatorcontrib>Kremer, Mark</creatorcontrib><creatorcontrib>Fritzsche, Alexander</creatorcontrib><creatorcontrib>Feichtner, Thorsten</creatorcontrib><creatorcontrib>Klembt, Sebastian</creatorcontrib><creatorcontrib>Höfling, Sven</creatorcontrib><creatorcontrib>Boettcher, Igor</creatorcontrib><creatorcontrib>Fulga, Ion Cosma</creatorcontrib><creatorcontrib>Ma, Libo</creatorcontrib><creatorcontrib>Schmidt, Oliver G.</creatorcontrib><creatorcontrib>Greiter, Martin</creatorcontrib><creatorcontrib>Kiessling, Tobias</creatorcontrib><creatorcontrib>Szameit, Alexander</creatorcontrib><creatorcontrib>Thomale, Ronny</creatorcontrib><creatorcontrib>Univ. of Maryland, College Park, MD (United States)</creatorcontrib><creatorcontrib>Duke Univ., Durham, NC (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stegmaier, Alexander</au><au>Imhof, Stefan</au><au>Helbig, Tobias</au><au>Hofmann, Tobias</au><au>Lee, Ching Hua</au><au>Kremer, Mark</au><au>Fritzsche, Alexander</au><au>Feichtner, Thorsten</au><au>Klembt, Sebastian</au><au>Höfling, Sven</au><au>Boettcher, Igor</au><au>Fulga, Ion Cosma</au><au>Ma, Libo</au><au>Schmidt, Oliver G.</au><au>Greiter, Martin</au><au>Kiessling, Tobias</au><au>Szameit, Alexander</au><au>Thomale, Ronny</au><aucorp>Univ. of Maryland, College Park, MD (United States)</aucorp><aucorp>Duke Univ., Durham, NC (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological Defect Engineering and $\mathcal{PT}$ Symmetry in Non-Hermitian Electrical Circuits</atitle><jtitle>Physical review letters</jtitle><date>2021-05-28</date><risdate>2021</risdate><volume>126</volume><issue>21</issue><issn>0031-9007</issn><abstract>In this work, we employ electric circuit networks to study topological states of matter in non-Hermitian systems enriched by parity-time symmetry $\mathcal{PT}$ and chiral symmetry anti-$\mathcal{PT (APT)}$. The topological structure manifests itself in the complex admittance bands which yields excellent measurability and signal to noise ratio. We analyze the impact of $\mathcal{PT}$-symmetric gain and loss on localized edge and defect states in a non-Hermitian Su-Schrieffer-Heeger (SSH) circuit. We realize all three symmetry phases of the system, including the $\mathcal{APT}$-symmetric regime that occurs at large gain and loss. We measure the admittance spectrum and eigenstates for arbitrary boundary conditions, which allows us to resolve not only topological edge states, but also a novel $\mathcal{PT}$-symmetric $\mathbb{Z}_2$ invariant of the bulk. We discover the distinct properties of topological edge states and defect states in the phase diagram. In the regime that is not $\mathcal{PT}$ symmetric, the topological defect state disappears and only reemerges when $\mathcal{APT}$ symmetry is reached, while the topological edge states always prevail and only experience a shift in eigenvalue. Our findings unveil a future route for topological defect engineering and tuning in non-Hermitian systems of arbitrary dimension.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><orcidid>https://orcid.org/0000000243878708</orcidid><orcidid>https://orcid.org/0000000306903238</orcidid><orcidid>https://orcid.org/0000000239798836</orcidid><orcidid>https://orcid.org/0000000320084013</orcidid><orcidid>https://orcid.org/0000000206056481</orcidid><orcidid>https://orcid.org/0000000325977259</orcidid><orcidid>https://orcid.org/0000000288645182</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2021-05, Vol.126 (21)
issn 0031-9007
language eng
recordid cdi_osti_scitechconnect_1852783
source American Physical Society Journals; EZB-FREE-00999 freely available EZB journals
subjects CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Physics
title Topological Defect Engineering and $\mathcal{PT}$ Symmetry in Non-Hermitian Electrical Circuits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A07%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20Defect%20Engineering%20and%20$%5Cmathcal%7BPT%7D$%20Symmetry%20in%20Non-Hermitian%20Electrical%20Circuits&rft.jtitle=Physical%20review%20letters&rft.au=Stegmaier,%20Alexander&rft.aucorp=Univ.%20of%20Maryland,%20College%20Park,%20MD%20(United%20States)&rft.date=2021-05-28&rft.volume=126&rft.issue=21&rft.issn=0031-9007&rft_id=info:doi/&rft_dat=%3Costi%3E1852783%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true