Topological Defect Engineering and $\mathcal{PT}$ Symmetry in Non-Hermitian Electrical Circuits
In this work, we employ electric circuit networks to study topological states of matter in non-Hermitian systems enriched by parity-time symmetry $\mathcal{PT}$ and chiral symmetry anti-$\mathcal{PT (APT)}$. The topological structure manifests itself in the complex admittance bands which yields exce...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2021-05, Vol.126 (21) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 21 |
container_start_page | |
container_title | Physical review letters |
container_volume | 126 |
creator | Stegmaier, Alexander Imhof, Stefan Helbig, Tobias Hofmann, Tobias Lee, Ching Hua Kremer, Mark Fritzsche, Alexander Feichtner, Thorsten Klembt, Sebastian Höfling, Sven Boettcher, Igor Fulga, Ion Cosma Ma, Libo Schmidt, Oliver G. Greiter, Martin Kiessling, Tobias Szameit, Alexander Thomale, Ronny |
description | In this work, we employ electric circuit networks to study topological states of matter in non-Hermitian systems enriched by parity-time symmetry $\mathcal{PT}$ and chiral symmetry anti-$\mathcal{PT (APT)}$. The topological structure manifests itself in the complex admittance bands which yields excellent measurability and signal to noise ratio. We analyze the impact of $\mathcal{PT}$-symmetric gain and loss on localized edge and defect states in a non-Hermitian Su-Schrieffer-Heeger (SSH) circuit. We realize all three symmetry phases of the system, including the $\mathcal{APT}$-symmetric regime that occurs at large gain and loss. We measure the admittance spectrum and eigenstates for arbitrary boundary conditions, which allows us to resolve not only topological edge states, but also a novel $\mathcal{PT}$-symmetric $\mathbb{Z}_2$ invariant of the bulk. We discover the distinct properties of topological edge states and defect states in the phase diagram. In the regime that is not $\mathcal{PT}$ symmetric, the topological defect state disappears and only reemerges when $\mathcal{APT}$ symmetry is reached, while the topological edge states always prevail and only experience a shift in eigenvalue. Our findings unveil a future route for topological defect engineering and tuning in non-Hermitian systems of arbitrary dimension. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1852783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1852783</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18527833</originalsourceid><addsrcrecordid>eNqNjLsKwjAUQDMoWB__EKRrIW3R1rlWnESwo1BCvG2vNDeSxKGI_24RP8DpLOecCQuESONoJ0Q2Y3Pn7kKIONnmAasr8zC9aVHJnu-hAeV5SS0SgEVquaQbD69a-m4UXufqHfLLoDV4O3AkfjIUHcFq9CiJl_2Y2--qQKue6N2STRvZO1j9uGDrQ1kVx8g4j7VT6EF1yhCNZR3nmyTL0_Qv6QN7rkOx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Topological Defect Engineering and $\mathcal{PT}$ Symmetry in Non-Hermitian Electrical Circuits</title><source>American Physical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Stegmaier, Alexander ; Imhof, Stefan ; Helbig, Tobias ; Hofmann, Tobias ; Lee, Ching Hua ; Kremer, Mark ; Fritzsche, Alexander ; Feichtner, Thorsten ; Klembt, Sebastian ; Höfling, Sven ; Boettcher, Igor ; Fulga, Ion Cosma ; Ma, Libo ; Schmidt, Oliver G. ; Greiter, Martin ; Kiessling, Tobias ; Szameit, Alexander ; Thomale, Ronny</creator><creatorcontrib>Stegmaier, Alexander ; Imhof, Stefan ; Helbig, Tobias ; Hofmann, Tobias ; Lee, Ching Hua ; Kremer, Mark ; Fritzsche, Alexander ; Feichtner, Thorsten ; Klembt, Sebastian ; Höfling, Sven ; Boettcher, Igor ; Fulga, Ion Cosma ; Ma, Libo ; Schmidt, Oliver G. ; Greiter, Martin ; Kiessling, Tobias ; Szameit, Alexander ; Thomale, Ronny ; Univ. of Maryland, College Park, MD (United States) ; Duke Univ., Durham, NC (United States)</creatorcontrib><description>In this work, we employ electric circuit networks to study topological states of matter in non-Hermitian systems enriched by parity-time symmetry $\mathcal{PT}$ and chiral symmetry anti-$\mathcal{PT (APT)}$. The topological structure manifests itself in the complex admittance bands which yields excellent measurability and signal to noise ratio. We analyze the impact of $\mathcal{PT}$-symmetric gain and loss on localized edge and defect states in a non-Hermitian Su-Schrieffer-Heeger (SSH) circuit. We realize all three symmetry phases of the system, including the $\mathcal{APT}$-symmetric regime that occurs at large gain and loss. We measure the admittance spectrum and eigenstates for arbitrary boundary conditions, which allows us to resolve not only topological edge states, but also a novel $\mathcal{PT}$-symmetric $\mathbb{Z}_2$ invariant of the bulk. We discover the distinct properties of topological edge states and defect states in the phase diagram. In the regime that is not $\mathcal{PT}$ symmetric, the topological defect state disappears and only reemerges when $\mathcal{APT}$ symmetry is reached, while the topological edge states always prevail and only experience a shift in eigenvalue. Our findings unveil a future route for topological defect engineering and tuning in non-Hermitian systems of arbitrary dimension.</description><identifier>ISSN: 0031-9007</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Physics</subject><ispartof>Physical review letters, 2021-05, Vol.126 (21)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000243878708 ; 0000000306903238 ; 0000000239798836 ; 0000000320084013 ; 0000000206056481 ; 0000000325977259 ; 0000000288645182</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1852783$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Stegmaier, Alexander</creatorcontrib><creatorcontrib>Imhof, Stefan</creatorcontrib><creatorcontrib>Helbig, Tobias</creatorcontrib><creatorcontrib>Hofmann, Tobias</creatorcontrib><creatorcontrib>Lee, Ching Hua</creatorcontrib><creatorcontrib>Kremer, Mark</creatorcontrib><creatorcontrib>Fritzsche, Alexander</creatorcontrib><creatorcontrib>Feichtner, Thorsten</creatorcontrib><creatorcontrib>Klembt, Sebastian</creatorcontrib><creatorcontrib>Höfling, Sven</creatorcontrib><creatorcontrib>Boettcher, Igor</creatorcontrib><creatorcontrib>Fulga, Ion Cosma</creatorcontrib><creatorcontrib>Ma, Libo</creatorcontrib><creatorcontrib>Schmidt, Oliver G.</creatorcontrib><creatorcontrib>Greiter, Martin</creatorcontrib><creatorcontrib>Kiessling, Tobias</creatorcontrib><creatorcontrib>Szameit, Alexander</creatorcontrib><creatorcontrib>Thomale, Ronny</creatorcontrib><creatorcontrib>Univ. of Maryland, College Park, MD (United States)</creatorcontrib><creatorcontrib>Duke Univ., Durham, NC (United States)</creatorcontrib><title>Topological Defect Engineering and $\mathcal{PT}$ Symmetry in Non-Hermitian Electrical Circuits</title><title>Physical review letters</title><description>In this work, we employ electric circuit networks to study topological states of matter in non-Hermitian systems enriched by parity-time symmetry $\mathcal{PT}$ and chiral symmetry anti-$\mathcal{PT (APT)}$. The topological structure manifests itself in the complex admittance bands which yields excellent measurability and signal to noise ratio. We analyze the impact of $\mathcal{PT}$-symmetric gain and loss on localized edge and defect states in a non-Hermitian Su-Schrieffer-Heeger (SSH) circuit. We realize all three symmetry phases of the system, including the $\mathcal{APT}$-symmetric regime that occurs at large gain and loss. We measure the admittance spectrum and eigenstates for arbitrary boundary conditions, which allows us to resolve not only topological edge states, but also a novel $\mathcal{PT}$-symmetric $\mathbb{Z}_2$ invariant of the bulk. We discover the distinct properties of topological edge states and defect states in the phase diagram. In the regime that is not $\mathcal{PT}$ symmetric, the topological defect state disappears and only reemerges when $\mathcal{APT}$ symmetry is reached, while the topological edge states always prevail and only experience a shift in eigenvalue. Our findings unveil a future route for topological defect engineering and tuning in non-Hermitian systems of arbitrary dimension.</description><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Physics</subject><issn>0031-9007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNjLsKwjAUQDMoWB__EKRrIW3R1rlWnESwo1BCvG2vNDeSxKGI_24RP8DpLOecCQuESONoJ0Q2Y3Pn7kKIONnmAasr8zC9aVHJnu-hAeV5SS0SgEVquaQbD69a-m4UXufqHfLLoDV4O3AkfjIUHcFq9CiJl_2Y2--qQKue6N2STRvZO1j9uGDrQ1kVx8g4j7VT6EF1yhCNZR3nmyTL0_Qv6QN7rkOx</recordid><startdate>20210528</startdate><enddate>20210528</enddate><creator>Stegmaier, Alexander</creator><creator>Imhof, Stefan</creator><creator>Helbig, Tobias</creator><creator>Hofmann, Tobias</creator><creator>Lee, Ching Hua</creator><creator>Kremer, Mark</creator><creator>Fritzsche, Alexander</creator><creator>Feichtner, Thorsten</creator><creator>Klembt, Sebastian</creator><creator>Höfling, Sven</creator><creator>Boettcher, Igor</creator><creator>Fulga, Ion Cosma</creator><creator>Ma, Libo</creator><creator>Schmidt, Oliver G.</creator><creator>Greiter, Martin</creator><creator>Kiessling, Tobias</creator><creator>Szameit, Alexander</creator><creator>Thomale, Ronny</creator><general>American Physical Society (APS)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000243878708</orcidid><orcidid>https://orcid.org/0000000306903238</orcidid><orcidid>https://orcid.org/0000000239798836</orcidid><orcidid>https://orcid.org/0000000320084013</orcidid><orcidid>https://orcid.org/0000000206056481</orcidid><orcidid>https://orcid.org/0000000325977259</orcidid><orcidid>https://orcid.org/0000000288645182</orcidid></search><sort><creationdate>20210528</creationdate><title>Topological Defect Engineering and $\mathcal{PT}$ Symmetry in Non-Hermitian Electrical Circuits</title><author>Stegmaier, Alexander ; Imhof, Stefan ; Helbig, Tobias ; Hofmann, Tobias ; Lee, Ching Hua ; Kremer, Mark ; Fritzsche, Alexander ; Feichtner, Thorsten ; Klembt, Sebastian ; Höfling, Sven ; Boettcher, Igor ; Fulga, Ion Cosma ; Ma, Libo ; Schmidt, Oliver G. ; Greiter, Martin ; Kiessling, Tobias ; Szameit, Alexander ; Thomale, Ronny</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18527833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stegmaier, Alexander</creatorcontrib><creatorcontrib>Imhof, Stefan</creatorcontrib><creatorcontrib>Helbig, Tobias</creatorcontrib><creatorcontrib>Hofmann, Tobias</creatorcontrib><creatorcontrib>Lee, Ching Hua</creatorcontrib><creatorcontrib>Kremer, Mark</creatorcontrib><creatorcontrib>Fritzsche, Alexander</creatorcontrib><creatorcontrib>Feichtner, Thorsten</creatorcontrib><creatorcontrib>Klembt, Sebastian</creatorcontrib><creatorcontrib>Höfling, Sven</creatorcontrib><creatorcontrib>Boettcher, Igor</creatorcontrib><creatorcontrib>Fulga, Ion Cosma</creatorcontrib><creatorcontrib>Ma, Libo</creatorcontrib><creatorcontrib>Schmidt, Oliver G.</creatorcontrib><creatorcontrib>Greiter, Martin</creatorcontrib><creatorcontrib>Kiessling, Tobias</creatorcontrib><creatorcontrib>Szameit, Alexander</creatorcontrib><creatorcontrib>Thomale, Ronny</creatorcontrib><creatorcontrib>Univ. of Maryland, College Park, MD (United States)</creatorcontrib><creatorcontrib>Duke Univ., Durham, NC (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stegmaier, Alexander</au><au>Imhof, Stefan</au><au>Helbig, Tobias</au><au>Hofmann, Tobias</au><au>Lee, Ching Hua</au><au>Kremer, Mark</au><au>Fritzsche, Alexander</au><au>Feichtner, Thorsten</au><au>Klembt, Sebastian</au><au>Höfling, Sven</au><au>Boettcher, Igor</au><au>Fulga, Ion Cosma</au><au>Ma, Libo</au><au>Schmidt, Oliver G.</au><au>Greiter, Martin</au><au>Kiessling, Tobias</au><au>Szameit, Alexander</au><au>Thomale, Ronny</au><aucorp>Univ. of Maryland, College Park, MD (United States)</aucorp><aucorp>Duke Univ., Durham, NC (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological Defect Engineering and $\mathcal{PT}$ Symmetry in Non-Hermitian Electrical Circuits</atitle><jtitle>Physical review letters</jtitle><date>2021-05-28</date><risdate>2021</risdate><volume>126</volume><issue>21</issue><issn>0031-9007</issn><abstract>In this work, we employ electric circuit networks to study topological states of matter in non-Hermitian systems enriched by parity-time symmetry $\mathcal{PT}$ and chiral symmetry anti-$\mathcal{PT (APT)}$. The topological structure manifests itself in the complex admittance bands which yields excellent measurability and signal to noise ratio. We analyze the impact of $\mathcal{PT}$-symmetric gain and loss on localized edge and defect states in a non-Hermitian Su-Schrieffer-Heeger (SSH) circuit. We realize all three symmetry phases of the system, including the $\mathcal{APT}$-symmetric regime that occurs at large gain and loss. We measure the admittance spectrum and eigenstates for arbitrary boundary conditions, which allows us to resolve not only topological edge states, but also a novel $\mathcal{PT}$-symmetric $\mathbb{Z}_2$ invariant of the bulk. We discover the distinct properties of topological edge states and defect states in the phase diagram. In the regime that is not $\mathcal{PT}$ symmetric, the topological defect state disappears and only reemerges when $\mathcal{APT}$ symmetry is reached, while the topological edge states always prevail and only experience a shift in eigenvalue. Our findings unveil a future route for topological defect engineering and tuning in non-Hermitian systems of arbitrary dimension.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><orcidid>https://orcid.org/0000000243878708</orcidid><orcidid>https://orcid.org/0000000306903238</orcidid><orcidid>https://orcid.org/0000000239798836</orcidid><orcidid>https://orcid.org/0000000320084013</orcidid><orcidid>https://orcid.org/0000000206056481</orcidid><orcidid>https://orcid.org/0000000325977259</orcidid><orcidid>https://orcid.org/0000000288645182</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2021-05, Vol.126 (21) |
issn | 0031-9007 |
language | eng |
recordid | cdi_osti_scitechconnect_1852783 |
source | American Physical Society Journals; EZB-FREE-00999 freely available EZB journals |
subjects | CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Physics |
title | Topological Defect Engineering and $\mathcal{PT}$ Symmetry in Non-Hermitian Electrical Circuits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A07%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20Defect%20Engineering%20and%20$%5Cmathcal%7BPT%7D$%20Symmetry%20in%20Non-Hermitian%20Electrical%20Circuits&rft.jtitle=Physical%20review%20letters&rft.au=Stegmaier,%20Alexander&rft.aucorp=Univ.%20of%20Maryland,%20College%20Park,%20MD%20(United%20States)&rft.date=2021-05-28&rft.volume=126&rft.issue=21&rft.issn=0031-9007&rft_id=info:doi/&rft_dat=%3Costi%3E1852783%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |