Spectroscopic Effects of Lattice Strain in InP/ZnSe and InP/ZnS Nanocrystals

An elastic continuum model has been used to analyze the effects of lattice mismatch on the spectroscopy of InP/ZnSe and InP/ZnS nanocrystals. Lattice strain affects the vibrational frequencies and band energetics and therefore the Raman and electronic spectra, respectively. The band energetics are d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2020-10, Vol.124 (41), p.22839-22844
Hauptverfasser: Lange, Holger, Kelley, David F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22844
container_issue 41
container_start_page 22839
container_title Journal of physical chemistry. C
container_volume 124
creator Lange, Holger
Kelley, David F
description An elastic continuum model has been used to analyze the effects of lattice mismatch on the spectroscopy of InP/ZnSe and InP/ZnS nanocrystals. Lattice strain affects the vibrational frequencies and band energetics and therefore the Raman and electronic spectra, respectively. The band energetics are determined from bulk values and calculated lattice strains and are used with an effective mass approximation model to obtain wave functions and calculated exciton energies. Recently reported Raman spectroscopy results on InP/ZnSe and InP/ZnS nanocrystals ( Rafipoor , J. Chem. Phys. 2019, 151, 154704 ) are analyzed using this model. The results show semiquantitative agreement between experimental and calculated Raman frequencies and exciton energies in the case of InP/ZnSe nanocrystals having more than a two-monolayer shell. This indicates that with this small lattice mismatch (3.5%), a coherent core/shell interface is obtained. In contrast, the InP/ZnS lattice mismatch is much larger, 8.3%. In this case, the experimental results show best agreement with calculations in which lattice strain is ignored. This indicates that the interfaces in InP/ZnS nanocrystals are largely incoherent.
doi_str_mv 10.1021/acs.jpcc.0c07145
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1852588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h96124421</sourcerecordid><originalsourceid>FETCH-LOGICAL-a373t-bfe76f41d15d9f41572290405408e74e7973f802e72541c44ddd51668f433a683</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrd49Bs9um8_N7lFK1cKiQvXiJcTZBLdosiTx0H9vaqs3YeDNY94M8x5Cl5TMKGF0biDNNiPAjABRVMgjNKEtZ5USUh7_9UKdorOUNoRITiifoG49WsgxJAjjAHjpXKEJB4c7k_MAFq9zNIPHpVb-af7q1xYb3_8S_GB8gLhN2Xykc3TiCtiLA07Ry-3yeXFfdY93q8VNVxmueK7enFW1E7Snsm8LSsVYSwSRgjRWCataxV1DmFVMCgpC9H0vaV03TnBu6oZP0dX-bkh50AmGbOEdgvfld00byWSzE5G9CIq7FK3TYxw-TdxqSvQuMl0i07vI9CGysnK9X_mZhK_oi4v_5d94u21l</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spectroscopic Effects of Lattice Strain in InP/ZnSe and InP/ZnS Nanocrystals</title><source>ACS Publications</source><creator>Lange, Holger ; Kelley, David F</creator><creatorcontrib>Lange, Holger ; Kelley, David F ; Univ. of California, Merced, CA (United States)</creatorcontrib><description>An elastic continuum model has been used to analyze the effects of lattice mismatch on the spectroscopy of InP/ZnSe and InP/ZnS nanocrystals. Lattice strain affects the vibrational frequencies and band energetics and therefore the Raman and electronic spectra, respectively. The band energetics are determined from bulk values and calculated lattice strains and are used with an effective mass approximation model to obtain wave functions and calculated exciton energies. Recently reported Raman spectroscopy results on InP/ZnSe and InP/ZnS nanocrystals ( Rafipoor , J. Chem. Phys. 2019, 151, 154704 ) are analyzed using this model. The results show semiquantitative agreement between experimental and calculated Raman frequencies and exciton energies in the case of InP/ZnSe nanocrystals having more than a two-monolayer shell. This indicates that with this small lattice mismatch (3.5%), a coherent core/shell interface is obtained. In contrast, the InP/ZnS lattice mismatch is much larger, 8.3%. In this case, the experimental results show best agreement with calculations in which lattice strain is ignored. This indicates that the interfaces in InP/ZnS nanocrystals are largely incoherent.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.0c07145</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>C: Physical Processes in Nanomaterials and Nanostructures ; Chemistry ; Materials Science ; Science &amp; Technology - Other Topics</subject><ispartof>Journal of physical chemistry. C, 2020-10, Vol.124 (41), p.22839-22844</ispartof><rights>XXXX American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a373t-bfe76f41d15d9f41572290405408e74e7973f802e72541c44ddd51668f433a683</citedby><cites>FETCH-LOGICAL-a373t-bfe76f41d15d9f41572290405408e74e7973f802e72541c44ddd51668f433a683</cites><orcidid>0000-0002-4236-2806 ; 0000-0002-4076-7965 ; 0000000242362806 ; 0000000240767965</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.0c07145$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.0c07145$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1852588$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lange, Holger</creatorcontrib><creatorcontrib>Kelley, David F</creatorcontrib><creatorcontrib>Univ. of California, Merced, CA (United States)</creatorcontrib><title>Spectroscopic Effects of Lattice Strain in InP/ZnSe and InP/ZnS Nanocrystals</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>An elastic continuum model has been used to analyze the effects of lattice mismatch on the spectroscopy of InP/ZnSe and InP/ZnS nanocrystals. Lattice strain affects the vibrational frequencies and band energetics and therefore the Raman and electronic spectra, respectively. The band energetics are determined from bulk values and calculated lattice strains and are used with an effective mass approximation model to obtain wave functions and calculated exciton energies. Recently reported Raman spectroscopy results on InP/ZnSe and InP/ZnS nanocrystals ( Rafipoor , J. Chem. Phys. 2019, 151, 154704 ) are analyzed using this model. The results show semiquantitative agreement between experimental and calculated Raman frequencies and exciton energies in the case of InP/ZnSe nanocrystals having more than a two-monolayer shell. This indicates that with this small lattice mismatch (3.5%), a coherent core/shell interface is obtained. In contrast, the InP/ZnS lattice mismatch is much larger, 8.3%. In this case, the experimental results show best agreement with calculations in which lattice strain is ignored. This indicates that the interfaces in InP/ZnS nanocrystals are largely incoherent.</description><subject>C: Physical Processes in Nanomaterials and Nanostructures</subject><subject>Chemistry</subject><subject>Materials Science</subject><subject>Science &amp; Technology - Other Topics</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJgrd49Bs9um8_N7lFK1cKiQvXiJcTZBLdosiTx0H9vaqs3YeDNY94M8x5Cl5TMKGF0biDNNiPAjABRVMgjNKEtZ5USUh7_9UKdorOUNoRITiifoG49WsgxJAjjAHjpXKEJB4c7k_MAFq9zNIPHpVb-af7q1xYb3_8S_GB8gLhN2Xykc3TiCtiLA07Ry-3yeXFfdY93q8VNVxmueK7enFW1E7Snsm8LSsVYSwSRgjRWCataxV1DmFVMCgpC9H0vaV03TnBu6oZP0dX-bkh50AmGbOEdgvfld00byWSzE5G9CIq7FK3TYxw-TdxqSvQuMl0i07vI9CGysnK9X_mZhK_oi4v_5d94u21l</recordid><startdate>20201015</startdate><enddate>20201015</enddate><creator>Lange, Holger</creator><creator>Kelley, David F</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4236-2806</orcidid><orcidid>https://orcid.org/0000-0002-4076-7965</orcidid><orcidid>https://orcid.org/0000000242362806</orcidid><orcidid>https://orcid.org/0000000240767965</orcidid></search><sort><creationdate>20201015</creationdate><title>Spectroscopic Effects of Lattice Strain in InP/ZnSe and InP/ZnS Nanocrystals</title><author>Lange, Holger ; Kelley, David F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a373t-bfe76f41d15d9f41572290405408e74e7973f802e72541c44ddd51668f433a683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>C: Physical Processes in Nanomaterials and Nanostructures</topic><topic>Chemistry</topic><topic>Materials Science</topic><topic>Science &amp; Technology - Other Topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lange, Holger</creatorcontrib><creatorcontrib>Kelley, David F</creatorcontrib><creatorcontrib>Univ. of California, Merced, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lange, Holger</au><au>Kelley, David F</au><aucorp>Univ. of California, Merced, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectroscopic Effects of Lattice Strain in InP/ZnSe and InP/ZnS Nanocrystals</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2020-10-15</date><risdate>2020</risdate><volume>124</volume><issue>41</issue><spage>22839</spage><epage>22844</epage><pages>22839-22844</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>An elastic continuum model has been used to analyze the effects of lattice mismatch on the spectroscopy of InP/ZnSe and InP/ZnS nanocrystals. Lattice strain affects the vibrational frequencies and band energetics and therefore the Raman and electronic spectra, respectively. The band energetics are determined from bulk values and calculated lattice strains and are used with an effective mass approximation model to obtain wave functions and calculated exciton energies. Recently reported Raman spectroscopy results on InP/ZnSe and InP/ZnS nanocrystals ( Rafipoor , J. Chem. Phys. 2019, 151, 154704 ) are analyzed using this model. The results show semiquantitative agreement between experimental and calculated Raman frequencies and exciton energies in the case of InP/ZnSe nanocrystals having more than a two-monolayer shell. This indicates that with this small lattice mismatch (3.5%), a coherent core/shell interface is obtained. In contrast, the InP/ZnS lattice mismatch is much larger, 8.3%. In this case, the experimental results show best agreement with calculations in which lattice strain is ignored. This indicates that the interfaces in InP/ZnS nanocrystals are largely incoherent.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.0c07145</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4236-2806</orcidid><orcidid>https://orcid.org/0000-0002-4076-7965</orcidid><orcidid>https://orcid.org/0000000242362806</orcidid><orcidid>https://orcid.org/0000000240767965</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2020-10, Vol.124 (41), p.22839-22844
issn 1932-7447
1932-7455
language eng
recordid cdi_osti_scitechconnect_1852588
source ACS Publications
subjects C: Physical Processes in Nanomaterials and Nanostructures
Chemistry
Materials Science
Science & Technology - Other Topics
title Spectroscopic Effects of Lattice Strain in InP/ZnSe and InP/ZnS Nanocrystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A50%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectroscopic%20Effects%20of%20Lattice%20Strain%20in%20InP/ZnSe%20and%20InP/ZnS%20Nanocrystals&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Lange,%20Holger&rft.aucorp=Univ.%20of%20California,%20Merced,%20CA%20(United%20States)&rft.date=2020-10-15&rft.volume=124&rft.issue=41&rft.spage=22839&rft.epage=22844&rft.pages=22839-22844&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.0c07145&rft_dat=%3Cacs_osti_%3Eh96124421%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true