A holey cavity for single-transducer 3D ultrasound imaging with physical optimization
Within the compressive sensing (CS) framework, one effective way to increase the likelihood of successful signal reconstruction is to employ random processes in the construction of the sensing matrix. This work presents a 3D holey cavity, with diverse frequency modes, to spectrally code, that is, ra...
Gespeichert in:
Veröffentlicht in: | Signal processing 2020-09, Vol.179 (C) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | C |
container_start_page | |
container_title | Signal processing |
container_volume | 179 |
creator | Ghanbarzadeh-Dagheyan, Ashkan Heredia-Juesas, Juan Liu, Chang Molaei, Ali Martinez-Lorenzo, Jose Angel Vosoughi Vahdat, Bijan Ahmadian, Mohammad Taghi |
description | Within the compressive sensing (CS) framework, one effective way to increase the likelihood of successful signal reconstruction is to employ random processes in the construction of the sensing matrix. This work presents a 3D holey cavity, with diverse frequency modes, to spectrally code, that is, randomize, the ultrasound wave fields. The simulated results show that the use of such a cavity enables imaging simple or complex targets, such as spheres or the letter E, by only a single transceiver—something that is not possible without the use of a coding structure like the cavity. The effect of noise on imaging results and the size of the targets on the first-order Born approximation (BA) are also investigated. Moreover, this study attempts to optimize the cavity, based on a single numerical metric, such as the sum of singular values (SSV) or mutual coherence (MC). Yet, it will be shown that neither of these metrics can consistently compare the norm-one imaging performance between two cavities of different materials or hole sizes. This leaves finding a quantitative metric for these kinds of optimizations an open problem. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1852373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1852373</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18523733</originalsourceid><addsrcrecordid>eNqNyksKwjAUQNEgCtbPHh7OC0ljP1PxgwvQsYQ0bZ-kSelLlbp6O3ABji4XzoxFosiTOE_TfM4iLrI0FlmxX7IV0ZNzLmTGI3Y_QOOtGUGrF4YRKt8DoautiUOvHJWDNj3IEwx2evKDKwFbVU8E3hga6JqRUCsLvgvY4kcF9G7DFpWyZLa_rtnucr4dr7GngA_SGIxutHfO6PAQRZrIXMq_0BeNnEKy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A holey cavity for single-transducer 3D ultrasound imaging with physical optimization</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ghanbarzadeh-Dagheyan, Ashkan ; Heredia-Juesas, Juan ; Liu, Chang ; Molaei, Ali ; Martinez-Lorenzo, Jose Angel ; Vosoughi Vahdat, Bijan ; Ahmadian, Mohammad Taghi</creator><creatorcontrib>Ghanbarzadeh-Dagheyan, Ashkan ; Heredia-Juesas, Juan ; Liu, Chang ; Molaei, Ali ; Martinez-Lorenzo, Jose Angel ; Vosoughi Vahdat, Bijan ; Ahmadian, Mohammad Taghi ; Northeastern Univ., Boston, MA (United States)</creatorcontrib><description>Within the compressive sensing (CS) framework, one effective way to increase the likelihood of successful signal reconstruction is to employ random processes in the construction of the sensing matrix. This work presents a 3D holey cavity, with diverse frequency modes, to spectrally code, that is, randomize, the ultrasound wave fields. The simulated results show that the use of such a cavity enables imaging simple or complex targets, such as spheres or the letter E, by only a single transceiver—something that is not possible without the use of a coding structure like the cavity. The effect of noise on imaging results and the size of the targets on the first-order Born approximation (BA) are also investigated. Moreover, this study attempts to optimize the cavity, based on a single numerical metric, such as the sum of singular values (SSV) or mutual coherence (MC). Yet, it will be shown that neither of these metrics can consistently compare the norm-one imaging performance between two cavities of different materials or hole sizes. This leaves finding a quantitative metric for these kinds of optimizations an open problem.</description><identifier>ISSN: 0165-1684</identifier><identifier>EISSN: 1872-7557</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>Born approximation ; Compressive sensing ; ENGINEERING ; Holey cavity ; Singular values ; Subwavelength imaging ; Tumor detection ; Ultrasound imaging</subject><ispartof>Signal processing, 2020-09, Vol.179 (C)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1852373$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghanbarzadeh-Dagheyan, Ashkan</creatorcontrib><creatorcontrib>Heredia-Juesas, Juan</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Molaei, Ali</creatorcontrib><creatorcontrib>Martinez-Lorenzo, Jose Angel</creatorcontrib><creatorcontrib>Vosoughi Vahdat, Bijan</creatorcontrib><creatorcontrib>Ahmadian, Mohammad Taghi</creatorcontrib><creatorcontrib>Northeastern Univ., Boston, MA (United States)</creatorcontrib><title>A holey cavity for single-transducer 3D ultrasound imaging with physical optimization</title><title>Signal processing</title><description>Within the compressive sensing (CS) framework, one effective way to increase the likelihood of successful signal reconstruction is to employ random processes in the construction of the sensing matrix. This work presents a 3D holey cavity, with diverse frequency modes, to spectrally code, that is, randomize, the ultrasound wave fields. The simulated results show that the use of such a cavity enables imaging simple or complex targets, such as spheres or the letter E, by only a single transceiver—something that is not possible without the use of a coding structure like the cavity. The effect of noise on imaging results and the size of the targets on the first-order Born approximation (BA) are also investigated. Moreover, this study attempts to optimize the cavity, based on a single numerical metric, such as the sum of singular values (SSV) or mutual coherence (MC). Yet, it will be shown that neither of these metrics can consistently compare the norm-one imaging performance between two cavities of different materials or hole sizes. This leaves finding a quantitative metric for these kinds of optimizations an open problem.</description><subject>Born approximation</subject><subject>Compressive sensing</subject><subject>ENGINEERING</subject><subject>Holey cavity</subject><subject>Singular values</subject><subject>Subwavelength imaging</subject><subject>Tumor detection</subject><subject>Ultrasound imaging</subject><issn>0165-1684</issn><issn>1872-7557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNyksKwjAUQNEgCtbPHh7OC0ljP1PxgwvQsYQ0bZ-kSelLlbp6O3ABji4XzoxFosiTOE_TfM4iLrI0FlmxX7IV0ZNzLmTGI3Y_QOOtGUGrF4YRKt8DoautiUOvHJWDNj3IEwx2evKDKwFbVU8E3hga6JqRUCsLvgvY4kcF9G7DFpWyZLa_rtnucr4dr7GngA_SGIxutHfO6PAQRZrIXMq_0BeNnEKy</recordid><startdate>20200925</startdate><enddate>20200925</enddate><creator>Ghanbarzadeh-Dagheyan, Ashkan</creator><creator>Heredia-Juesas, Juan</creator><creator>Liu, Chang</creator><creator>Molaei, Ali</creator><creator>Martinez-Lorenzo, Jose Angel</creator><creator>Vosoughi Vahdat, Bijan</creator><creator>Ahmadian, Mohammad Taghi</creator><general>Elsevier</general><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20200925</creationdate><title>A holey cavity for single-transducer 3D ultrasound imaging with physical optimization</title><author>Ghanbarzadeh-Dagheyan, Ashkan ; Heredia-Juesas, Juan ; Liu, Chang ; Molaei, Ali ; Martinez-Lorenzo, Jose Angel ; Vosoughi Vahdat, Bijan ; Ahmadian, Mohammad Taghi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18523733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Born approximation</topic><topic>Compressive sensing</topic><topic>ENGINEERING</topic><topic>Holey cavity</topic><topic>Singular values</topic><topic>Subwavelength imaging</topic><topic>Tumor detection</topic><topic>Ultrasound imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghanbarzadeh-Dagheyan, Ashkan</creatorcontrib><creatorcontrib>Heredia-Juesas, Juan</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Molaei, Ali</creatorcontrib><creatorcontrib>Martinez-Lorenzo, Jose Angel</creatorcontrib><creatorcontrib>Vosoughi Vahdat, Bijan</creatorcontrib><creatorcontrib>Ahmadian, Mohammad Taghi</creatorcontrib><creatorcontrib>Northeastern Univ., Boston, MA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghanbarzadeh-Dagheyan, Ashkan</au><au>Heredia-Juesas, Juan</au><au>Liu, Chang</au><au>Molaei, Ali</au><au>Martinez-Lorenzo, Jose Angel</au><au>Vosoughi Vahdat, Bijan</au><au>Ahmadian, Mohammad Taghi</au><aucorp>Northeastern Univ., Boston, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A holey cavity for single-transducer 3D ultrasound imaging with physical optimization</atitle><jtitle>Signal processing</jtitle><date>2020-09-25</date><risdate>2020</risdate><volume>179</volume><issue>C</issue><issn>0165-1684</issn><eissn>1872-7557</eissn><abstract>Within the compressive sensing (CS) framework, one effective way to increase the likelihood of successful signal reconstruction is to employ random processes in the construction of the sensing matrix. This work presents a 3D holey cavity, with diverse frequency modes, to spectrally code, that is, randomize, the ultrasound wave fields. The simulated results show that the use of such a cavity enables imaging simple or complex targets, such as spheres or the letter E, by only a single transceiver—something that is not possible without the use of a coding structure like the cavity. The effect of noise on imaging results and the size of the targets on the first-order Born approximation (BA) are also investigated. Moreover, this study attempts to optimize the cavity, based on a single numerical metric, such as the sum of singular values (SSV) or mutual coherence (MC). Yet, it will be shown that neither of these metrics can consistently compare the norm-one imaging performance between two cavities of different materials or hole sizes. This leaves finding a quantitative metric for these kinds of optimizations an open problem.</abstract><cop>United States</cop><pub>Elsevier</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-1684 |
ispartof | Signal processing, 2020-09, Vol.179 (C) |
issn | 0165-1684 1872-7557 |
language | eng |
recordid | cdi_osti_scitechconnect_1852373 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Born approximation Compressive sensing ENGINEERING Holey cavity Singular values Subwavelength imaging Tumor detection Ultrasound imaging |
title | A holey cavity for single-transducer 3D ultrasound imaging with physical optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A19%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20holey%20cavity%20for%20single-transducer%203D%20ultrasound%20imaging%20with%20physical%20optimization&rft.jtitle=Signal%20processing&rft.au=Ghanbarzadeh-Dagheyan,%20Ashkan&rft.aucorp=Northeastern%20Univ.,%20Boston,%20MA%20(United%20States)&rft.date=2020-09-25&rft.volume=179&rft.issue=C&rft.issn=0165-1684&rft.eissn=1872-7557&rft_id=info:doi/&rft_dat=%3Costi%3E1852373%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |