A holey cavity for single-transducer 3D ultrasound imaging with physical optimization

Within the compressive sensing (CS) framework, one effective way to increase the likelihood of successful signal reconstruction is to employ random processes in the construction of the sensing matrix. This work presents a 3D holey cavity, with diverse frequency modes, to spectrally code, that is, ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal processing 2020-09, Vol.179 (C)
Hauptverfasser: Ghanbarzadeh-Dagheyan, Ashkan, Heredia-Juesas, Juan, Liu, Chang, Molaei, Ali, Martinez-Lorenzo, Jose Angel, Vosoughi Vahdat, Bijan, Ahmadian, Mohammad Taghi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page
container_title Signal processing
container_volume 179
creator Ghanbarzadeh-Dagheyan, Ashkan
Heredia-Juesas, Juan
Liu, Chang
Molaei, Ali
Martinez-Lorenzo, Jose Angel
Vosoughi Vahdat, Bijan
Ahmadian, Mohammad Taghi
description Within the compressive sensing (CS) framework, one effective way to increase the likelihood of successful signal reconstruction is to employ random processes in the construction of the sensing matrix. This work presents a 3D holey cavity, with diverse frequency modes, to spectrally code, that is, randomize, the ultrasound wave fields. The simulated results show that the use of such a cavity enables imaging simple or complex targets, such as spheres or the letter E, by only a single transceiver—something that is not possible without the use of a coding structure like the cavity. The effect of noise on imaging results and the size of the targets on the first-order Born approximation (BA) are also investigated. Moreover, this study attempts to optimize the cavity, based on a single numerical metric, such as the sum of singular values (SSV) or mutual coherence (MC). Yet, it will be shown that neither of these metrics can consistently compare the norm-one imaging performance between two cavities of different materials or hole sizes. This leaves finding a quantitative metric for these kinds of optimizations an open problem.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1852373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1852373</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18523733</originalsourceid><addsrcrecordid>eNqNyksKwjAUQNEgCtbPHh7OC0ljP1PxgwvQsYQ0bZ-kSelLlbp6O3ABji4XzoxFosiTOE_TfM4iLrI0FlmxX7IV0ZNzLmTGI3Y_QOOtGUGrF4YRKt8DoautiUOvHJWDNj3IEwx2evKDKwFbVU8E3hga6JqRUCsLvgvY4kcF9G7DFpWyZLa_rtnucr4dr7GngA_SGIxutHfO6PAQRZrIXMq_0BeNnEKy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A holey cavity for single-transducer 3D ultrasound imaging with physical optimization</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ghanbarzadeh-Dagheyan, Ashkan ; Heredia-Juesas, Juan ; Liu, Chang ; Molaei, Ali ; Martinez-Lorenzo, Jose Angel ; Vosoughi Vahdat, Bijan ; Ahmadian, Mohammad Taghi</creator><creatorcontrib>Ghanbarzadeh-Dagheyan, Ashkan ; Heredia-Juesas, Juan ; Liu, Chang ; Molaei, Ali ; Martinez-Lorenzo, Jose Angel ; Vosoughi Vahdat, Bijan ; Ahmadian, Mohammad Taghi ; Northeastern Univ., Boston, MA (United States)</creatorcontrib><description>Within the compressive sensing (CS) framework, one effective way to increase the likelihood of successful signal reconstruction is to employ random processes in the construction of the sensing matrix. This work presents a 3D holey cavity, with diverse frequency modes, to spectrally code, that is, randomize, the ultrasound wave fields. The simulated results show that the use of such a cavity enables imaging simple or complex targets, such as spheres or the letter E, by only a single transceiver—something that is not possible without the use of a coding structure like the cavity. The effect of noise on imaging results and the size of the targets on the first-order Born approximation (BA) are also investigated. Moreover, this study attempts to optimize the cavity, based on a single numerical metric, such as the sum of singular values (SSV) or mutual coherence (MC). Yet, it will be shown that neither of these metrics can consistently compare the norm-one imaging performance between two cavities of different materials or hole sizes. This leaves finding a quantitative metric for these kinds of optimizations an open problem.</description><identifier>ISSN: 0165-1684</identifier><identifier>EISSN: 1872-7557</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>Born approximation ; Compressive sensing ; ENGINEERING ; Holey cavity ; Singular values ; Subwavelength imaging ; Tumor detection ; Ultrasound imaging</subject><ispartof>Signal processing, 2020-09, Vol.179 (C)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1852373$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghanbarzadeh-Dagheyan, Ashkan</creatorcontrib><creatorcontrib>Heredia-Juesas, Juan</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Molaei, Ali</creatorcontrib><creatorcontrib>Martinez-Lorenzo, Jose Angel</creatorcontrib><creatorcontrib>Vosoughi Vahdat, Bijan</creatorcontrib><creatorcontrib>Ahmadian, Mohammad Taghi</creatorcontrib><creatorcontrib>Northeastern Univ., Boston, MA (United States)</creatorcontrib><title>A holey cavity for single-transducer 3D ultrasound imaging with physical optimization</title><title>Signal processing</title><description>Within the compressive sensing (CS) framework, one effective way to increase the likelihood of successful signal reconstruction is to employ random processes in the construction of the sensing matrix. This work presents a 3D holey cavity, with diverse frequency modes, to spectrally code, that is, randomize, the ultrasound wave fields. The simulated results show that the use of such a cavity enables imaging simple or complex targets, such as spheres or the letter E, by only a single transceiver—something that is not possible without the use of a coding structure like the cavity. The effect of noise on imaging results and the size of the targets on the first-order Born approximation (BA) are also investigated. Moreover, this study attempts to optimize the cavity, based on a single numerical metric, such as the sum of singular values (SSV) or mutual coherence (MC). Yet, it will be shown that neither of these metrics can consistently compare the norm-one imaging performance between two cavities of different materials or hole sizes. This leaves finding a quantitative metric for these kinds of optimizations an open problem.</description><subject>Born approximation</subject><subject>Compressive sensing</subject><subject>ENGINEERING</subject><subject>Holey cavity</subject><subject>Singular values</subject><subject>Subwavelength imaging</subject><subject>Tumor detection</subject><subject>Ultrasound imaging</subject><issn>0165-1684</issn><issn>1872-7557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNyksKwjAUQNEgCtbPHh7OC0ljP1PxgwvQsYQ0bZ-kSelLlbp6O3ABji4XzoxFosiTOE_TfM4iLrI0FlmxX7IV0ZNzLmTGI3Y_QOOtGUGrF4YRKt8DoautiUOvHJWDNj3IEwx2evKDKwFbVU8E3hga6JqRUCsLvgvY4kcF9G7DFpWyZLa_rtnucr4dr7GngA_SGIxutHfO6PAQRZrIXMq_0BeNnEKy</recordid><startdate>20200925</startdate><enddate>20200925</enddate><creator>Ghanbarzadeh-Dagheyan, Ashkan</creator><creator>Heredia-Juesas, Juan</creator><creator>Liu, Chang</creator><creator>Molaei, Ali</creator><creator>Martinez-Lorenzo, Jose Angel</creator><creator>Vosoughi Vahdat, Bijan</creator><creator>Ahmadian, Mohammad Taghi</creator><general>Elsevier</general><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20200925</creationdate><title>A holey cavity for single-transducer 3D ultrasound imaging with physical optimization</title><author>Ghanbarzadeh-Dagheyan, Ashkan ; Heredia-Juesas, Juan ; Liu, Chang ; Molaei, Ali ; Martinez-Lorenzo, Jose Angel ; Vosoughi Vahdat, Bijan ; Ahmadian, Mohammad Taghi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18523733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Born approximation</topic><topic>Compressive sensing</topic><topic>ENGINEERING</topic><topic>Holey cavity</topic><topic>Singular values</topic><topic>Subwavelength imaging</topic><topic>Tumor detection</topic><topic>Ultrasound imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghanbarzadeh-Dagheyan, Ashkan</creatorcontrib><creatorcontrib>Heredia-Juesas, Juan</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Molaei, Ali</creatorcontrib><creatorcontrib>Martinez-Lorenzo, Jose Angel</creatorcontrib><creatorcontrib>Vosoughi Vahdat, Bijan</creatorcontrib><creatorcontrib>Ahmadian, Mohammad Taghi</creatorcontrib><creatorcontrib>Northeastern Univ., Boston, MA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghanbarzadeh-Dagheyan, Ashkan</au><au>Heredia-Juesas, Juan</au><au>Liu, Chang</au><au>Molaei, Ali</au><au>Martinez-Lorenzo, Jose Angel</au><au>Vosoughi Vahdat, Bijan</au><au>Ahmadian, Mohammad Taghi</au><aucorp>Northeastern Univ., Boston, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A holey cavity for single-transducer 3D ultrasound imaging with physical optimization</atitle><jtitle>Signal processing</jtitle><date>2020-09-25</date><risdate>2020</risdate><volume>179</volume><issue>C</issue><issn>0165-1684</issn><eissn>1872-7557</eissn><abstract>Within the compressive sensing (CS) framework, one effective way to increase the likelihood of successful signal reconstruction is to employ random processes in the construction of the sensing matrix. This work presents a 3D holey cavity, with diverse frequency modes, to spectrally code, that is, randomize, the ultrasound wave fields. The simulated results show that the use of such a cavity enables imaging simple or complex targets, such as spheres or the letter E, by only a single transceiver—something that is not possible without the use of a coding structure like the cavity. The effect of noise on imaging results and the size of the targets on the first-order Born approximation (BA) are also investigated. Moreover, this study attempts to optimize the cavity, based on a single numerical metric, such as the sum of singular values (SSV) or mutual coherence (MC). Yet, it will be shown that neither of these metrics can consistently compare the norm-one imaging performance between two cavities of different materials or hole sizes. This leaves finding a quantitative metric for these kinds of optimizations an open problem.</abstract><cop>United States</cop><pub>Elsevier</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0165-1684
ispartof Signal processing, 2020-09, Vol.179 (C)
issn 0165-1684
1872-7557
language eng
recordid cdi_osti_scitechconnect_1852373
source ScienceDirect Journals (5 years ago - present)
subjects Born approximation
Compressive sensing
ENGINEERING
Holey cavity
Singular values
Subwavelength imaging
Tumor detection
Ultrasound imaging
title A holey cavity for single-transducer 3D ultrasound imaging with physical optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A19%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20holey%20cavity%20for%20single-transducer%203D%20ultrasound%20imaging%20with%20physical%20optimization&rft.jtitle=Signal%20processing&rft.au=Ghanbarzadeh-Dagheyan,%20Ashkan&rft.aucorp=Northeastern%20Univ.,%20Boston,%20MA%20(United%20States)&rft.date=2020-09-25&rft.volume=179&rft.issue=C&rft.issn=0165-1684&rft.eissn=1872-7557&rft_id=info:doi/&rft_dat=%3Costi%3E1852373%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true