Magnetite nanoparticle anchored graphene cathode enhances microbial electrosynthesis of polyhydroxybutyrate by Rhodopseudomonas palustris TIE-1

Microbial electrosynthesis (MES) is an emerging technology that can convert carbon dioxide (CO2) into value-added organic carbon compounds using electrons supplied from a cathode. However, MES is affected by low product formation due to limited extracellular electron uptake by microbes. Herein, a no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2021-01, Vol.32 (3), p.035103-035103
Hauptverfasser: Rengasamy, Karthikeyan, Ranaivoarisoa, Tahina, Bai, Wei, Bose, Arpita
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 035103
container_issue 3
container_start_page 035103
container_title Nanotechnology
container_volume 32
creator Rengasamy, Karthikeyan
Ranaivoarisoa, Tahina
Bai, Wei
Bose, Arpita
description Microbial electrosynthesis (MES) is an emerging technology that can convert carbon dioxide (CO2) into value-added organic carbon compounds using electrons supplied from a cathode. However, MES is affected by low product formation due to limited extracellular electron uptake by microbes. Herein, a novel cathode was developed from chemically synthesized magnetite nanoparticles and reduced graphene oxide nanocomposite (rGO-MNPs). This nanocomposite was electrochemically deposited on carbon felt (CF/rGO-MNPs), and the modified material was used as a cathode for MES production. The bioplastic, polyhydroxybutyrate (PHB) produced by Rhodopseudomonas palustris TIE-1 (TIE-1), was measured from reactors with modified and unmodified cathodes. Results demonstrate that the magnetite nanoparticle anchored graphene cathode (CF/rGO-MNPs) exhibited higher PHB production (91.31 0.9 mg l−1). This is ∼4.2 times higher than unmodified carbon felt (CF), and 20 times higher than previously reported using graphite. This modified cathode enhanced electron uptake to −11.7 0.1 A cm−2, ∼5 times higher than CF cathode (−2.3 0.08 A cm−2). The faradaic efficiency of the modified cathode was ∼2 times higher than the unmodified cathode. Electrochemical analysis and scanning electron microscopy suggest that rGO-MNPs facilitated electron uptake and improved PHB production by TIE-1. Overall, the nanocomposite (rGO-MNPs) cathode modification enhances MES efficiency.
doi_str_mv 10.1088/1361-6528/abbe58
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1851967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448843740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-c1aedcb6514a53df6df20ef706300154f077aa7b81cb450e831c4067281af9ab3</originalsourceid><addsrcrecordid>eNp1kUFv1DAQhS0EotvCnROyOHFoqB3HsfeIqgKVipBQOVtjZ9KkSuxgO1LzK_jLeLWlXOBkafy9N5r3CHnD2QfOtL7gouVVK2t9Adai1M_I7mn0nOzYXqqqaXRzQk5TumeMc13zl-RECMaVZmpHfn2FO495zEg9-LBAzKObkIJ3Q4jY0bsIy4AeqYM8hA4p-qF8YqLz6GKwI0wUJ3Q5hrT5PGAaEw09XcK0DVsXw8Nm17xFKBvsRr8Xj7AkXLswBw-JLjCtKcciur2-qvgr8qKHKeHrx_eM_Ph0dXv5pbr59vn68uNN5STjuXIcsHO2lbwBKbq-7fqaYa9YK8qVsumZUgDKau5sIxlqwV3DWlVrDv0erDgj746-IeXRJFcCcIML3pdLDNeS71tVoPdHaInh54opm3lMDqcJPIY1mbpkqxuhGlZQdkRLJilF7M0SxxniZjgzh67MoRhzKMYcuyqSt4_uq52xexL8Kefv-jEs5j6s0ZdEzKEmI2ojDBOSM2GWri_o-T_Q_67-DbDpr1o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448843740</pqid></control><display><type>article</type><title>Magnetite nanoparticle anchored graphene cathode enhances microbial electrosynthesis of polyhydroxybutyrate by Rhodopseudomonas palustris TIE-1</title><source>Institute of Physics Journals</source><creator>Rengasamy, Karthikeyan ; Ranaivoarisoa, Tahina ; Bai, Wei ; Bose, Arpita</creator><creatorcontrib>Rengasamy, Karthikeyan ; Ranaivoarisoa, Tahina ; Bai, Wei ; Bose, Arpita ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) ; Washington Univ., St. Louis, MO (United States)</creatorcontrib><description>Microbial electrosynthesis (MES) is an emerging technology that can convert carbon dioxide (CO2) into value-added organic carbon compounds using electrons supplied from a cathode. However, MES is affected by low product formation due to limited extracellular electron uptake by microbes. Herein, a novel cathode was developed from chemically synthesized magnetite nanoparticles and reduced graphene oxide nanocomposite (rGO-MNPs). This nanocomposite was electrochemically deposited on carbon felt (CF/rGO-MNPs), and the modified material was used as a cathode for MES production. The bioplastic, polyhydroxybutyrate (PHB) produced by Rhodopseudomonas palustris TIE-1 (TIE-1), was measured from reactors with modified and unmodified cathodes. Results demonstrate that the magnetite nanoparticle anchored graphene cathode (CF/rGO-MNPs) exhibited higher PHB production (91.31 0.9 mg l−1). This is ∼4.2 times higher than unmodified carbon felt (CF), and 20 times higher than previously reported using graphite. This modified cathode enhanced electron uptake to −11.7 0.1 A cm−2, ∼5 times higher than CF cathode (−2.3 0.08 A cm−2). The faradaic efficiency of the modified cathode was ∼2 times higher than the unmodified cathode. Electrochemical analysis and scanning electron microscopy suggest that rGO-MNPs facilitated electron uptake and improved PHB production by TIE-1. Overall, the nanocomposite (rGO-MNPs) cathode modification enhances MES efficiency.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/abbe58</identifier><identifier>PMID: 33017807</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>magnetite nanoparticles ; Materials Science ; microbial electrosynthesis ; Physics ; polyhydroxybutyrate(PHB) ; Science &amp; Technology - Other Topics ; TIE-1</subject><ispartof>Nanotechnology, 2021-01, Vol.32 (3), p.035103-035103</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-c1aedcb6514a53df6df20ef706300154f077aa7b81cb450e831c4067281af9ab3</citedby><cites>FETCH-LOGICAL-c501t-c1aedcb6514a53df6df20ef706300154f077aa7b81cb450e831c4067281af9ab3</cites><orcidid>0000-0002-7526-0988 ; 0000000275260988</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6528/abbe58/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33017807$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1851967$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rengasamy, Karthikeyan</creatorcontrib><creatorcontrib>Ranaivoarisoa, Tahina</creatorcontrib><creatorcontrib>Bai, Wei</creatorcontrib><creatorcontrib>Bose, Arpita</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Washington Univ., St. Louis, MO (United States)</creatorcontrib><title>Magnetite nanoparticle anchored graphene cathode enhances microbial electrosynthesis of polyhydroxybutyrate by Rhodopseudomonas palustris TIE-1</title><title>Nanotechnology</title><addtitle>NANO</addtitle><addtitle>Nanotechnology</addtitle><description>Microbial electrosynthesis (MES) is an emerging technology that can convert carbon dioxide (CO2) into value-added organic carbon compounds using electrons supplied from a cathode. However, MES is affected by low product formation due to limited extracellular electron uptake by microbes. Herein, a novel cathode was developed from chemically synthesized magnetite nanoparticles and reduced graphene oxide nanocomposite (rGO-MNPs). This nanocomposite was electrochemically deposited on carbon felt (CF/rGO-MNPs), and the modified material was used as a cathode for MES production. The bioplastic, polyhydroxybutyrate (PHB) produced by Rhodopseudomonas palustris TIE-1 (TIE-1), was measured from reactors with modified and unmodified cathodes. Results demonstrate that the magnetite nanoparticle anchored graphene cathode (CF/rGO-MNPs) exhibited higher PHB production (91.31 0.9 mg l−1). This is ∼4.2 times higher than unmodified carbon felt (CF), and 20 times higher than previously reported using graphite. This modified cathode enhanced electron uptake to −11.7 0.1 A cm−2, ∼5 times higher than CF cathode (−2.3 0.08 A cm−2). The faradaic efficiency of the modified cathode was ∼2 times higher than the unmodified cathode. Electrochemical analysis and scanning electron microscopy suggest that rGO-MNPs facilitated electron uptake and improved PHB production by TIE-1. Overall, the nanocomposite (rGO-MNPs) cathode modification enhances MES efficiency.</description><subject>magnetite nanoparticles</subject><subject>Materials Science</subject><subject>microbial electrosynthesis</subject><subject>Physics</subject><subject>polyhydroxybutyrate(PHB)</subject><subject>Science &amp; Technology - Other Topics</subject><subject>TIE-1</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kUFv1DAQhS0EotvCnROyOHFoqB3HsfeIqgKVipBQOVtjZ9KkSuxgO1LzK_jLeLWlXOBkafy9N5r3CHnD2QfOtL7gouVVK2t9Adai1M_I7mn0nOzYXqqqaXRzQk5TumeMc13zl-RECMaVZmpHfn2FO495zEg9-LBAzKObkIJ3Q4jY0bsIy4AeqYM8hA4p-qF8YqLz6GKwI0wUJ3Q5hrT5PGAaEw09XcK0DVsXw8Nm17xFKBvsRr8Xj7AkXLswBw-JLjCtKcciur2-qvgr8qKHKeHrx_eM_Ph0dXv5pbr59vn68uNN5STjuXIcsHO2lbwBKbq-7fqaYa9YK8qVsumZUgDKau5sIxlqwV3DWlVrDv0erDgj746-IeXRJFcCcIML3pdLDNeS71tVoPdHaInh54opm3lMDqcJPIY1mbpkqxuhGlZQdkRLJilF7M0SxxniZjgzh67MoRhzKMYcuyqSt4_uq52xexL8Kefv-jEs5j6s0ZdEzKEmI2ojDBOSM2GWri_o-T_Q_67-DbDpr1o</recordid><startdate>20210115</startdate><enddate>20210115</enddate><creator>Rengasamy, Karthikeyan</creator><creator>Ranaivoarisoa, Tahina</creator><creator>Bai, Wei</creator><creator>Bose, Arpita</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7526-0988</orcidid><orcidid>https://orcid.org/0000000275260988</orcidid></search><sort><creationdate>20210115</creationdate><title>Magnetite nanoparticle anchored graphene cathode enhances microbial electrosynthesis of polyhydroxybutyrate by Rhodopseudomonas palustris TIE-1</title><author>Rengasamy, Karthikeyan ; Ranaivoarisoa, Tahina ; Bai, Wei ; Bose, Arpita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-c1aedcb6514a53df6df20ef706300154f077aa7b81cb450e831c4067281af9ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>magnetite nanoparticles</topic><topic>Materials Science</topic><topic>microbial electrosynthesis</topic><topic>Physics</topic><topic>polyhydroxybutyrate(PHB)</topic><topic>Science &amp; Technology - Other Topics</topic><topic>TIE-1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rengasamy, Karthikeyan</creatorcontrib><creatorcontrib>Ranaivoarisoa, Tahina</creatorcontrib><creatorcontrib>Bai, Wei</creatorcontrib><creatorcontrib>Bose, Arpita</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Washington Univ., St. Louis, MO (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rengasamy, Karthikeyan</au><au>Ranaivoarisoa, Tahina</au><au>Bai, Wei</au><au>Bose, Arpita</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><aucorp>Washington Univ., St. Louis, MO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetite nanoparticle anchored graphene cathode enhances microbial electrosynthesis of polyhydroxybutyrate by Rhodopseudomonas palustris TIE-1</atitle><jtitle>Nanotechnology</jtitle><stitle>NANO</stitle><addtitle>Nanotechnology</addtitle><date>2021-01-15</date><risdate>2021</risdate><volume>32</volume><issue>3</issue><spage>035103</spage><epage>035103</epage><pages>035103-035103</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>Microbial electrosynthesis (MES) is an emerging technology that can convert carbon dioxide (CO2) into value-added organic carbon compounds using electrons supplied from a cathode. However, MES is affected by low product formation due to limited extracellular electron uptake by microbes. Herein, a novel cathode was developed from chemically synthesized magnetite nanoparticles and reduced graphene oxide nanocomposite (rGO-MNPs). This nanocomposite was electrochemically deposited on carbon felt (CF/rGO-MNPs), and the modified material was used as a cathode for MES production. The bioplastic, polyhydroxybutyrate (PHB) produced by Rhodopseudomonas palustris TIE-1 (TIE-1), was measured from reactors with modified and unmodified cathodes. Results demonstrate that the magnetite nanoparticle anchored graphene cathode (CF/rGO-MNPs) exhibited higher PHB production (91.31 0.9 mg l−1). This is ∼4.2 times higher than unmodified carbon felt (CF), and 20 times higher than previously reported using graphite. This modified cathode enhanced electron uptake to −11.7 0.1 A cm−2, ∼5 times higher than CF cathode (−2.3 0.08 A cm−2). The faradaic efficiency of the modified cathode was ∼2 times higher than the unmodified cathode. Electrochemical analysis and scanning electron microscopy suggest that rGO-MNPs facilitated electron uptake and improved PHB production by TIE-1. Overall, the nanocomposite (rGO-MNPs) cathode modification enhances MES efficiency.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>33017807</pmid><doi>10.1088/1361-6528/abbe58</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7526-0988</orcidid><orcidid>https://orcid.org/0000000275260988</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4484
ispartof Nanotechnology, 2021-01, Vol.32 (3), p.035103-035103
issn 0957-4484
1361-6528
language eng
recordid cdi_osti_scitechconnect_1851967
source Institute of Physics Journals
subjects magnetite nanoparticles
Materials Science
microbial electrosynthesis
Physics
polyhydroxybutyrate(PHB)
Science & Technology - Other Topics
TIE-1
title Magnetite nanoparticle anchored graphene cathode enhances microbial electrosynthesis of polyhydroxybutyrate by Rhodopseudomonas palustris TIE-1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A52%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetite%20nanoparticle%20anchored%20graphene%20cathode%20enhances%20microbial%20electrosynthesis%20of%20polyhydroxybutyrate%20by%20Rhodopseudomonas%20palustris%20TIE-1&rft.jtitle=Nanotechnology&rft.au=Rengasamy,%20Karthikeyan&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2021-01-15&rft.volume=32&rft.issue=3&rft.spage=035103&rft.epage=035103&rft.pages=035103-035103&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/1361-6528/abbe58&rft_dat=%3Cproquest_osti_%3E2448843740%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448843740&rft_id=info:pmid/33017807&rfr_iscdi=true