Tunable Porous Electrode Architectures for Enhanced Li-Ion Storage Kinetics in Thick Electrodes

Thick electrodes, although promising toward high-energy battery systems, suffer from restricted lithium-ion transport kinetics due to prolonged diffusion lengths and tortuous transport pathways. Despite the emerging low-tortuosity designs, capacity retention under higher current densities is still l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2021-07, Vol.21 (13), p.5896-5904
Hauptverfasser: Zhang, Xiao, Hui, Zeyu, King, Steven, Wang, Lei, Ju, Zhengyu, Wu, Jingyi, Takeuchi, Kenneth J, Marschilok, Amy C, West, Alan C, Takeuchi, Esther S, Yu, Guihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5904
container_issue 13
container_start_page 5896
container_title Nano letters
container_volume 21
creator Zhang, Xiao
Hui, Zeyu
King, Steven
Wang, Lei
Ju, Zhengyu
Wu, Jingyi
Takeuchi, Kenneth J
Marschilok, Amy C
West, Alan C
Takeuchi, Esther S
Yu, Guihua
description Thick electrodes, although promising toward high-energy battery systems, suffer from restricted lithium-ion transport kinetics due to prolonged diffusion lengths and tortuous transport pathways. Despite the emerging low-tortuosity designs, capacity retention under higher current densities is still limited. Herein, we employ a modified ice-templating method to fabricate low-tortuosity porous electrodes with tunable wall thickness and channel width and systematically investigate the critical impacts of the fine structural parameters on the thick electrode electrochemistry. While the porous electrodes with thick walls show diminished capability under a C-rate larger than 1.5 C, those with thinner walls could maintain ∼70% capacity under 2.5 C. The superior capacity retention is ascribed to the fast diffusion into the thin lamellar walls compared with their thicker counterparts. This study provides deeper insights into structure-affected electrochemistry and opens up new perspective of 3D porous architectural designs for high-energy and high-power electrodes.
doi_str_mv 10.1021/acs.nanolett.1c02142
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1851750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548405340</sourcerecordid><originalsourceid>FETCH-LOGICAL-a352t-708df7cc88364d8931b74126bbf5ecad5f2c7088f935570dcf79f575296a3a293</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEEqXwBywsVmxS_MxjWVUFKiqBRFlbjmNTl9QutrPg73GUAjtW4xmfO7pzs-wawRmCGN0JGWZWWNepGGdIphHFJ9kEMQLzoq7x6e-7oufZRQg7CGFNGJxkfNNb0XQKvDjv-gCWnZLRu1aBuZdbE1PXexWAdh4s7VZYqVqwNvnKWfAanRfvCjwZq6KRARgLNlsjP_62hMvsTIsuqKtjnWZv98vN4jFfPz-sFvN1LgjDMS9h1epSyqoiBW2rmqCmpAgXTaOZkqJlGsvEVDq5ZiVspS5rzUqG60IQgWsyzW7GvS5Ew4McnG-lszYZ4ahiqGQwQbcjdPDus1ch8r0JUnWdsCodzzGjFYWM0AGlIyq9C8ErzQ_e7IX_4gjyIXSeQuc_ofNj6EkGR9nwu3O9t-no_yXfJz6I8w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548405340</pqid></control><display><type>article</type><title>Tunable Porous Electrode Architectures for Enhanced Li-Ion Storage Kinetics in Thick Electrodes</title><source>ACS Publications</source><creator>Zhang, Xiao ; Hui, Zeyu ; King, Steven ; Wang, Lei ; Ju, Zhengyu ; Wu, Jingyi ; Takeuchi, Kenneth J ; Marschilok, Amy C ; West, Alan C ; Takeuchi, Esther S ; Yu, Guihua</creator><creatorcontrib>Zhang, Xiao ; Hui, Zeyu ; King, Steven ; Wang, Lei ; Ju, Zhengyu ; Wu, Jingyi ; Takeuchi, Kenneth J ; Marschilok, Amy C ; West, Alan C ; Takeuchi, Esther S ; Yu, Guihua ; State Univ. of New York (SUNY), Albany, NY (United States)</creatorcontrib><description>Thick electrodes, although promising toward high-energy battery systems, suffer from restricted lithium-ion transport kinetics due to prolonged diffusion lengths and tortuous transport pathways. Despite the emerging low-tortuosity designs, capacity retention under higher current densities is still limited. Herein, we employ a modified ice-templating method to fabricate low-tortuosity porous electrodes with tunable wall thickness and channel width and systematically investigate the critical impacts of the fine structural parameters on the thick electrode electrochemistry. While the porous electrodes with thick walls show diminished capability under a C-rate larger than 1.5 C, those with thinner walls could maintain ∼70% capacity under 2.5 C. The superior capacity retention is ascribed to the fast diffusion into the thin lamellar walls compared with their thicker counterparts. This study provides deeper insights into structure-affected electrochemistry and opens up new perspective of 3D porous architectural designs for high-energy and high-power electrodes.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.1c02142</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemistry ; Materials Science ; Physics ; Science &amp; Technology - Other Topics</subject><ispartof>Nano letters, 2021-07, Vol.21 (13), p.5896-5904</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a352t-708df7cc88364d8931b74126bbf5ecad5f2c7088f935570dcf79f575296a3a293</citedby><cites>FETCH-LOGICAL-a352t-708df7cc88364d8931b74126bbf5ecad5f2c7088f935570dcf79f575296a3a293</cites><orcidid>0000-0002-3524-3040 ; 0000-0001-8518-1047 ; 0000-0001-8129-444X ; 0000-0002-6596-9731 ; 0000-0002-6348-8344 ; 0000-0001-9174-0474 ; 0000-0002-3253-0749 ; 0000000235243040 ; 0000000232530749 ; 0000000263488344 ; 0000000191740474 ; 000000018129444X ; 0000000185181047 ; 0000000265969731</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.1c02142$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.1c02142$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1851750$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>Hui, Zeyu</creatorcontrib><creatorcontrib>King, Steven</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Ju, Zhengyu</creatorcontrib><creatorcontrib>Wu, Jingyi</creatorcontrib><creatorcontrib>Takeuchi, Kenneth J</creatorcontrib><creatorcontrib>Marschilok, Amy C</creatorcontrib><creatorcontrib>West, Alan C</creatorcontrib><creatorcontrib>Takeuchi, Esther S</creatorcontrib><creatorcontrib>Yu, Guihua</creatorcontrib><creatorcontrib>State Univ. of New York (SUNY), Albany, NY (United States)</creatorcontrib><title>Tunable Porous Electrode Architectures for Enhanced Li-Ion Storage Kinetics in Thick Electrodes</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Thick electrodes, although promising toward high-energy battery systems, suffer from restricted lithium-ion transport kinetics due to prolonged diffusion lengths and tortuous transport pathways. Despite the emerging low-tortuosity designs, capacity retention under higher current densities is still limited. Herein, we employ a modified ice-templating method to fabricate low-tortuosity porous electrodes with tunable wall thickness and channel width and systematically investigate the critical impacts of the fine structural parameters on the thick electrode electrochemistry. While the porous electrodes with thick walls show diminished capability under a C-rate larger than 1.5 C, those with thinner walls could maintain ∼70% capacity under 2.5 C. The superior capacity retention is ascribed to the fast diffusion into the thin lamellar walls compared with their thicker counterparts. This study provides deeper insights into structure-affected electrochemistry and opens up new perspective of 3D porous architectural designs for high-energy and high-power electrodes.</description><subject>Chemistry</subject><subject>Materials Science</subject><subject>Physics</subject><subject>Science &amp; Technology - Other Topics</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRSMEEqXwBywsVmxS_MxjWVUFKiqBRFlbjmNTl9QutrPg73GUAjtW4xmfO7pzs-wawRmCGN0JGWZWWNepGGdIphHFJ9kEMQLzoq7x6e-7oufZRQg7CGFNGJxkfNNb0XQKvDjv-gCWnZLRu1aBuZdbE1PXexWAdh4s7VZYqVqwNvnKWfAanRfvCjwZq6KRARgLNlsjP_62hMvsTIsuqKtjnWZv98vN4jFfPz-sFvN1LgjDMS9h1epSyqoiBW2rmqCmpAgXTaOZkqJlGsvEVDq5ZiVspS5rzUqG60IQgWsyzW7GvS5Ew4McnG-lszYZ4ahiqGQwQbcjdPDus1ch8r0JUnWdsCodzzGjFYWM0AGlIyq9C8ErzQ_e7IX_4gjyIXSeQuc_ofNj6EkGR9nwu3O9t-no_yXfJz6I8w</recordid><startdate>20210714</startdate><enddate>20210714</enddate><creator>Zhang, Xiao</creator><creator>Hui, Zeyu</creator><creator>King, Steven</creator><creator>Wang, Lei</creator><creator>Ju, Zhengyu</creator><creator>Wu, Jingyi</creator><creator>Takeuchi, Kenneth J</creator><creator>Marschilok, Amy C</creator><creator>West, Alan C</creator><creator>Takeuchi, Esther S</creator><creator>Yu, Guihua</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3524-3040</orcidid><orcidid>https://orcid.org/0000-0001-8518-1047</orcidid><orcidid>https://orcid.org/0000-0001-8129-444X</orcidid><orcidid>https://orcid.org/0000-0002-6596-9731</orcidid><orcidid>https://orcid.org/0000-0002-6348-8344</orcidid><orcidid>https://orcid.org/0000-0001-9174-0474</orcidid><orcidid>https://orcid.org/0000-0002-3253-0749</orcidid><orcidid>https://orcid.org/0000000235243040</orcidid><orcidid>https://orcid.org/0000000232530749</orcidid><orcidid>https://orcid.org/0000000263488344</orcidid><orcidid>https://orcid.org/0000000191740474</orcidid><orcidid>https://orcid.org/000000018129444X</orcidid><orcidid>https://orcid.org/0000000185181047</orcidid><orcidid>https://orcid.org/0000000265969731</orcidid></search><sort><creationdate>20210714</creationdate><title>Tunable Porous Electrode Architectures for Enhanced Li-Ion Storage Kinetics in Thick Electrodes</title><author>Zhang, Xiao ; Hui, Zeyu ; King, Steven ; Wang, Lei ; Ju, Zhengyu ; Wu, Jingyi ; Takeuchi, Kenneth J ; Marschilok, Amy C ; West, Alan C ; Takeuchi, Esther S ; Yu, Guihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a352t-708df7cc88364d8931b74126bbf5ecad5f2c7088f935570dcf79f575296a3a293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Materials Science</topic><topic>Physics</topic><topic>Science &amp; Technology - Other Topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>Hui, Zeyu</creatorcontrib><creatorcontrib>King, Steven</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Ju, Zhengyu</creatorcontrib><creatorcontrib>Wu, Jingyi</creatorcontrib><creatorcontrib>Takeuchi, Kenneth J</creatorcontrib><creatorcontrib>Marschilok, Amy C</creatorcontrib><creatorcontrib>West, Alan C</creatorcontrib><creatorcontrib>Takeuchi, Esther S</creatorcontrib><creatorcontrib>Yu, Guihua</creatorcontrib><creatorcontrib>State Univ. of New York (SUNY), Albany, NY (United States)</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xiao</au><au>Hui, Zeyu</au><au>King, Steven</au><au>Wang, Lei</au><au>Ju, Zhengyu</au><au>Wu, Jingyi</au><au>Takeuchi, Kenneth J</au><au>Marschilok, Amy C</au><au>West, Alan C</au><au>Takeuchi, Esther S</au><au>Yu, Guihua</au><aucorp>State Univ. of New York (SUNY), Albany, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable Porous Electrode Architectures for Enhanced Li-Ion Storage Kinetics in Thick Electrodes</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2021-07-14</date><risdate>2021</risdate><volume>21</volume><issue>13</issue><spage>5896</spage><epage>5904</epage><pages>5896-5904</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Thick electrodes, although promising toward high-energy battery systems, suffer from restricted lithium-ion transport kinetics due to prolonged diffusion lengths and tortuous transport pathways. Despite the emerging low-tortuosity designs, capacity retention under higher current densities is still limited. Herein, we employ a modified ice-templating method to fabricate low-tortuosity porous electrodes with tunable wall thickness and channel width and systematically investigate the critical impacts of the fine structural parameters on the thick electrode electrochemistry. While the porous electrodes with thick walls show diminished capability under a C-rate larger than 1.5 C, those with thinner walls could maintain ∼70% capacity under 2.5 C. The superior capacity retention is ascribed to the fast diffusion into the thin lamellar walls compared with their thicker counterparts. This study provides deeper insights into structure-affected electrochemistry and opens up new perspective of 3D porous architectural designs for high-energy and high-power electrodes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.nanolett.1c02142</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3524-3040</orcidid><orcidid>https://orcid.org/0000-0001-8518-1047</orcidid><orcidid>https://orcid.org/0000-0001-8129-444X</orcidid><orcidid>https://orcid.org/0000-0002-6596-9731</orcidid><orcidid>https://orcid.org/0000-0002-6348-8344</orcidid><orcidid>https://orcid.org/0000-0001-9174-0474</orcidid><orcidid>https://orcid.org/0000-0002-3253-0749</orcidid><orcidid>https://orcid.org/0000000235243040</orcidid><orcidid>https://orcid.org/0000000232530749</orcidid><orcidid>https://orcid.org/0000000263488344</orcidid><orcidid>https://orcid.org/0000000191740474</orcidid><orcidid>https://orcid.org/000000018129444X</orcidid><orcidid>https://orcid.org/0000000185181047</orcidid><orcidid>https://orcid.org/0000000265969731</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2021-07, Vol.21 (13), p.5896-5904
issn 1530-6984
1530-6992
language eng
recordid cdi_osti_scitechconnect_1851750
source ACS Publications
subjects Chemistry
Materials Science
Physics
Science & Technology - Other Topics
title Tunable Porous Electrode Architectures for Enhanced Li-Ion Storage Kinetics in Thick Electrodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A49%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20Porous%20Electrode%20Architectures%20for%20Enhanced%20Li-Ion%20Storage%20Kinetics%20in%20Thick%20Electrodes&rft.jtitle=Nano%20letters&rft.au=Zhang,%20Xiao&rft.aucorp=State%20Univ.%20of%20New%20York%20(SUNY),%20Albany,%20NY%20(United%20States)&rft.date=2021-07-14&rft.volume=21&rft.issue=13&rft.spage=5896&rft.epage=5904&rft.pages=5896-5904&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.1c02142&rft_dat=%3Cproquest_osti_%3E2548405340%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548405340&rft_id=info:pmid/&rfr_iscdi=true