Facile ab initio approach for self-localized polarons from canonical transformations

Electronic states in a crystal can localize due to strong electron-phonon (e-ph) interactions, forming so-called small polarons. Methods to predict the formation and energetics of small polarons are either computationally costly or not geared toward quantitative predictions. Here we show a formalism...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review materials 2021-06, Vol.5 (6), Article 063805
Hauptverfasser: Lee, Nien-En, Chen, Hsiao-Yi, Zhou, Jin-Jian, Bernardi, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Physical review materials
container_volume 5
creator Lee, Nien-En
Chen, Hsiao-Yi
Zhou, Jin-Jian
Bernardi, Marco
description Electronic states in a crystal can localize due to strong electron-phonon (e-ph) interactions, forming so-called small polarons. Methods to predict the formation and energetics of small polarons are either computationally costly or not geared toward quantitative predictions. Here we show a formalism based on canonical transformations to compute the polaron formation energy and wave function using ab initio e-ph interactions. Comparison of the calculated polaron and band-edge energies allows us to determine whether charge carriers in a material favor a localized small polaron over a delocalized Bloch state. Due to its low computational cost, our approach enables efficient studies of the formation and energetics of small polarons, as we demonstrate by investigating electron and hole polaron formation in alkali halides and metal oxides and peroxides. We outline refinements of our scheme and extensions to compute transport in the polaron hopping regime.
doi_str_mv 10.1103/PhysRevMaterials.5.063805
format Article
fullrecord <record><control><sourceid>webofscience_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1850882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>000665792200001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-369a19a308664dbe697c0af5bfc0fc40f8a9fe85f4a0a1ae934d1adb6364f4bb3</originalsourceid><addsrcrecordid>eNqNkMFKxDAQhosouOi-Q_QqXZOmSZujFFeFFUXWc5mmCRvpJiWJyvr0Zq2IePI0A_P9M8mXZWcELwjB9PJxswtP6u0eovIGhrBgC8xpjdlBNivKiuVCMHr4qz_O5iG8YIxJzUhRiVm2XoI0g0LQIWNNNA7BOHoHcoO08yioQeeDkzCYD9Wj0Q3gnQ1Ie7dFEqyzJs1Q9GBD4reQNthwmh3p9Bw1_64n2fPyet3c5quHm7vmapVLSkXMKRdABFBcc172neKikhg067TEWpZY1yC0qpkuAQMBJWjZE-g7Tnmpy66jJ9n5tNeFaNogTVRyI521SsY2fRHXdZEgMUHSuxC80u3ozRb8riW43Wts_2psWTtpTNmLKfuuOqfTAWWl-sknj5yzShQF3itNdP1_ujHxS1bjXm2kn58xjhg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Facile ab initio approach for self-localized polarons from canonical transformations</title><source>American Physical Society Journals</source><creator>Lee, Nien-En ; Chen, Hsiao-Yi ; Zhou, Jin-Jian ; Bernardi, Marco</creator><creatorcontrib>Lee, Nien-En ; Chen, Hsiao-Yi ; Zhou, Jin-Jian ; Bernardi, Marco ; California Institute of Technology (CalTech), Pasadena, CA (United States) ; Univ. of California, Oakland, CA (United States)</creatorcontrib><description>Electronic states in a crystal can localize due to strong electron-phonon (e-ph) interactions, forming so-called small polarons. Methods to predict the formation and energetics of small polarons are either computationally costly or not geared toward quantitative predictions. Here we show a formalism based on canonical transformations to compute the polaron formation energy and wave function using ab initio e-ph interactions. Comparison of the calculated polaron and band-edge energies allows us to determine whether charge carriers in a material favor a localized small polaron over a delocalized Bloch state. Due to its low computational cost, our approach enables efficient studies of the formation and energetics of small polarons, as we demonstrate by investigating electron and hole polaron formation in alkali halides and metal oxides and peroxides. We outline refinements of our scheme and extensions to compute transport in the polaron hopping regime.</description><identifier>ISSN: 2475-9953</identifier><identifier>EISSN: 2475-9953</identifier><identifier>DOI: 10.1103/PhysRevMaterials.5.063805</identifier><language>eng</language><publisher>COLLEGE PK: Amer Physical Soc</publisher><subject>Density functional calculations ; Electron-phonon coupling ; First-principles calculations ; Insulators ; MATERIALS SCIENCE ; Materials Science, Multidisciplinary ; Polarons ; Science &amp; Technology ; Semiconductor compounds ; Technology</subject><ispartof>Physical review materials, 2021-06, Vol.5 (6), Article 063805</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>12</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000665792200001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c339t-369a19a308664dbe697c0af5bfc0fc40f8a9fe85f4a0a1ae934d1adb6364f4bb3</citedby><cites>FETCH-LOGICAL-c339t-369a19a308664dbe697c0af5bfc0fc40f8a9fe85f4a0a1ae934d1adb6364f4bb3</cites><orcidid>0000-0003-1962-5767 ; 0000-0001-7289-9666 ; 0000000319625767 ; 0000000172899666</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1850882$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Nien-En</creatorcontrib><creatorcontrib>Chen, Hsiao-Yi</creatorcontrib><creatorcontrib>Zhou, Jin-Jian</creatorcontrib><creatorcontrib>Bernardi, Marco</creatorcontrib><creatorcontrib>California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><title>Facile ab initio approach for self-localized polarons from canonical transformations</title><title>Physical review materials</title><addtitle>PHYS REV MATER</addtitle><description>Electronic states in a crystal can localize due to strong electron-phonon (e-ph) interactions, forming so-called small polarons. Methods to predict the formation and energetics of small polarons are either computationally costly or not geared toward quantitative predictions. Here we show a formalism based on canonical transformations to compute the polaron formation energy and wave function using ab initio e-ph interactions. Comparison of the calculated polaron and band-edge energies allows us to determine whether charge carriers in a material favor a localized small polaron over a delocalized Bloch state. Due to its low computational cost, our approach enables efficient studies of the formation and energetics of small polarons, as we demonstrate by investigating electron and hole polaron formation in alkali halides and metal oxides and peroxides. We outline refinements of our scheme and extensions to compute transport in the polaron hopping regime.</description><subject>Density functional calculations</subject><subject>Electron-phonon coupling</subject><subject>First-principles calculations</subject><subject>Insulators</subject><subject>MATERIALS SCIENCE</subject><subject>Materials Science, Multidisciplinary</subject><subject>Polarons</subject><subject>Science &amp; Technology</subject><subject>Semiconductor compounds</subject><subject>Technology</subject><issn>2475-9953</issn><issn>2475-9953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkMFKxDAQhosouOi-Q_QqXZOmSZujFFeFFUXWc5mmCRvpJiWJyvr0Zq2IePI0A_P9M8mXZWcELwjB9PJxswtP6u0eovIGhrBgC8xpjdlBNivKiuVCMHr4qz_O5iG8YIxJzUhRiVm2XoI0g0LQIWNNNA7BOHoHcoO08yioQeeDkzCYD9Wj0Q3gnQ1Ie7dFEqyzJs1Q9GBD4reQNthwmh3p9Bw1_64n2fPyet3c5quHm7vmapVLSkXMKRdABFBcc172neKikhg067TEWpZY1yC0qpkuAQMBJWjZE-g7Tnmpy66jJ9n5tNeFaNogTVRyI521SsY2fRHXdZEgMUHSuxC80u3ozRb8riW43Wts_2psWTtpTNmLKfuuOqfTAWWl-sknj5yzShQF3itNdP1_ujHxS1bjXm2kn58xjhg</recordid><startdate>20210624</startdate><enddate>20210624</enddate><creator>Lee, Nien-En</creator><creator>Chen, Hsiao-Yi</creator><creator>Zhou, Jin-Jian</creator><creator>Bernardi, Marco</creator><general>Amer Physical Soc</general><general>American Physical Society (APS)</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1962-5767</orcidid><orcidid>https://orcid.org/0000-0001-7289-9666</orcidid><orcidid>https://orcid.org/0000000319625767</orcidid><orcidid>https://orcid.org/0000000172899666</orcidid></search><sort><creationdate>20210624</creationdate><title>Facile ab initio approach for self-localized polarons from canonical transformations</title><author>Lee, Nien-En ; Chen, Hsiao-Yi ; Zhou, Jin-Jian ; Bernardi, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-369a19a308664dbe697c0af5bfc0fc40f8a9fe85f4a0a1ae934d1adb6364f4bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Density functional calculations</topic><topic>Electron-phonon coupling</topic><topic>First-principles calculations</topic><topic>Insulators</topic><topic>MATERIALS SCIENCE</topic><topic>Materials Science, Multidisciplinary</topic><topic>Polarons</topic><topic>Science &amp; Technology</topic><topic>Semiconductor compounds</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Nien-En</creatorcontrib><creatorcontrib>Chen, Hsiao-Yi</creatorcontrib><creatorcontrib>Zhou, Jin-Jian</creatorcontrib><creatorcontrib>Bernardi, Marco</creatorcontrib><creatorcontrib>California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Nien-En</au><au>Chen, Hsiao-Yi</au><au>Zhou, Jin-Jian</au><au>Bernardi, Marco</au><aucorp>California Institute of Technology (CalTech), Pasadena, CA (United States)</aucorp><aucorp>Univ. of California, Oakland, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facile ab initio approach for self-localized polarons from canonical transformations</atitle><jtitle>Physical review materials</jtitle><stitle>PHYS REV MATER</stitle><date>2021-06-24</date><risdate>2021</risdate><volume>5</volume><issue>6</issue><artnum>063805</artnum><issn>2475-9953</issn><eissn>2475-9953</eissn><abstract>Electronic states in a crystal can localize due to strong electron-phonon (e-ph) interactions, forming so-called small polarons. Methods to predict the formation and energetics of small polarons are either computationally costly or not geared toward quantitative predictions. Here we show a formalism based on canonical transformations to compute the polaron formation energy and wave function using ab initio e-ph interactions. Comparison of the calculated polaron and band-edge energies allows us to determine whether charge carriers in a material favor a localized small polaron over a delocalized Bloch state. Due to its low computational cost, our approach enables efficient studies of the formation and energetics of small polarons, as we demonstrate by investigating electron and hole polaron formation in alkali halides and metal oxides and peroxides. We outline refinements of our scheme and extensions to compute transport in the polaron hopping regime.</abstract><cop>COLLEGE PK</cop><pub>Amer Physical Soc</pub><doi>10.1103/PhysRevMaterials.5.063805</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1962-5767</orcidid><orcidid>https://orcid.org/0000-0001-7289-9666</orcidid><orcidid>https://orcid.org/0000000319625767</orcidid><orcidid>https://orcid.org/0000000172899666</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2475-9953
ispartof Physical review materials, 2021-06, Vol.5 (6), Article 063805
issn 2475-9953
2475-9953
language eng
recordid cdi_osti_scitechconnect_1850882
source American Physical Society Journals
subjects Density functional calculations
Electron-phonon coupling
First-principles calculations
Insulators
MATERIALS SCIENCE
Materials Science, Multidisciplinary
Polarons
Science & Technology
Semiconductor compounds
Technology
title Facile ab initio approach for self-localized polarons from canonical transformations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A24%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-webofscience_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facile%20ab%20initio%20approach%20for%20self-localized%20polarons%20from%20canonical%20transformations&rft.jtitle=Physical%20review%20materials&rft.au=Lee,%20Nien-En&rft.aucorp=California%20Institute%20of%20Technology%20(CalTech),%20Pasadena,%20CA%20(United%20States)&rft.date=2021-06-24&rft.volume=5&rft.issue=6&rft.artnum=063805&rft.issn=2475-9953&rft.eissn=2475-9953&rft_id=info:doi/10.1103/PhysRevMaterials.5.063805&rft_dat=%3Cwebofscience_osti_%3E000665792200001%3C/webofscience_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true