Facile ab initio approach for self-localized polarons from canonical transformations
Electronic states in a crystal can localize due to strong electron-phonon (e-ph) interactions, forming so-called small polarons. Methods to predict the formation and energetics of small polarons are either computationally costly or not geared toward quantitative predictions. Here we show a formalism...
Gespeichert in:
Veröffentlicht in: | Physical review materials 2021-06, Vol.5 (6), Article 063805 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Physical review materials |
container_volume | 5 |
creator | Lee, Nien-En Chen, Hsiao-Yi Zhou, Jin-Jian Bernardi, Marco |
description | Electronic states in a crystal can localize due to strong electron-phonon (e-ph) interactions, forming so-called small polarons. Methods to predict the formation and energetics of small polarons are either computationally costly or not geared toward quantitative predictions. Here we show a formalism based on canonical transformations to compute the polaron formation energy and wave function using ab initio e-ph interactions. Comparison of the calculated polaron and band-edge energies allows us to determine whether charge carriers in a material favor a localized small polaron over a delocalized Bloch state. Due to its low computational cost, our approach enables efficient studies of the formation and energetics of small polarons, as we demonstrate by investigating electron and hole polaron formation in alkali halides and metal oxides and peroxides. We outline refinements of our scheme and extensions to compute transport in the polaron hopping regime. |
doi_str_mv | 10.1103/PhysRevMaterials.5.063805 |
format | Article |
fullrecord | <record><control><sourceid>webofscience_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1850882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>000665792200001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-369a19a308664dbe697c0af5bfc0fc40f8a9fe85f4a0a1ae934d1adb6364f4bb3</originalsourceid><addsrcrecordid>eNqNkMFKxDAQhosouOi-Q_QqXZOmSZujFFeFFUXWc5mmCRvpJiWJyvr0Zq2IePI0A_P9M8mXZWcELwjB9PJxswtP6u0eovIGhrBgC8xpjdlBNivKiuVCMHr4qz_O5iG8YIxJzUhRiVm2XoI0g0LQIWNNNA7BOHoHcoO08yioQeeDkzCYD9Wj0Q3gnQ1Ie7dFEqyzJs1Q9GBD4reQNthwmh3p9Bw1_64n2fPyet3c5quHm7vmapVLSkXMKRdABFBcc172neKikhg067TEWpZY1yC0qpkuAQMBJWjZE-g7Tnmpy66jJ9n5tNeFaNogTVRyI521SsY2fRHXdZEgMUHSuxC80u3ozRb8riW43Wts_2psWTtpTNmLKfuuOqfTAWWl-sknj5yzShQF3itNdP1_ujHxS1bjXm2kn58xjhg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Facile ab initio approach for self-localized polarons from canonical transformations</title><source>American Physical Society Journals</source><creator>Lee, Nien-En ; Chen, Hsiao-Yi ; Zhou, Jin-Jian ; Bernardi, Marco</creator><creatorcontrib>Lee, Nien-En ; Chen, Hsiao-Yi ; Zhou, Jin-Jian ; Bernardi, Marco ; California Institute of Technology (CalTech), Pasadena, CA (United States) ; Univ. of California, Oakland, CA (United States)</creatorcontrib><description>Electronic states in a crystal can localize due to strong electron-phonon (e-ph) interactions, forming so-called small polarons. Methods to predict the formation and energetics of small polarons are either computationally costly or not geared toward quantitative predictions. Here we show a formalism based on canonical transformations to compute the polaron formation energy and wave function using ab initio e-ph interactions. Comparison of the calculated polaron and band-edge energies allows us to determine whether charge carriers in a material favor a localized small polaron over a delocalized Bloch state. Due to its low computational cost, our approach enables efficient studies of the formation and energetics of small polarons, as we demonstrate by investigating electron and hole polaron formation in alkali halides and metal oxides and peroxides. We outline refinements of our scheme and extensions to compute transport in the polaron hopping regime.</description><identifier>ISSN: 2475-9953</identifier><identifier>EISSN: 2475-9953</identifier><identifier>DOI: 10.1103/PhysRevMaterials.5.063805</identifier><language>eng</language><publisher>COLLEGE PK: Amer Physical Soc</publisher><subject>Density functional calculations ; Electron-phonon coupling ; First-principles calculations ; Insulators ; MATERIALS SCIENCE ; Materials Science, Multidisciplinary ; Polarons ; Science & Technology ; Semiconductor compounds ; Technology</subject><ispartof>Physical review materials, 2021-06, Vol.5 (6), Article 063805</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>12</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000665792200001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c339t-369a19a308664dbe697c0af5bfc0fc40f8a9fe85f4a0a1ae934d1adb6364f4bb3</citedby><cites>FETCH-LOGICAL-c339t-369a19a308664dbe697c0af5bfc0fc40f8a9fe85f4a0a1ae934d1adb6364f4bb3</cites><orcidid>0000-0003-1962-5767 ; 0000-0001-7289-9666 ; 0000000319625767 ; 0000000172899666</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1850882$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Nien-En</creatorcontrib><creatorcontrib>Chen, Hsiao-Yi</creatorcontrib><creatorcontrib>Zhou, Jin-Jian</creatorcontrib><creatorcontrib>Bernardi, Marco</creatorcontrib><creatorcontrib>California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><title>Facile ab initio approach for self-localized polarons from canonical transformations</title><title>Physical review materials</title><addtitle>PHYS REV MATER</addtitle><description>Electronic states in a crystal can localize due to strong electron-phonon (e-ph) interactions, forming so-called small polarons. Methods to predict the formation and energetics of small polarons are either computationally costly or not geared toward quantitative predictions. Here we show a formalism based on canonical transformations to compute the polaron formation energy and wave function using ab initio e-ph interactions. Comparison of the calculated polaron and band-edge energies allows us to determine whether charge carriers in a material favor a localized small polaron over a delocalized Bloch state. Due to its low computational cost, our approach enables efficient studies of the formation and energetics of small polarons, as we demonstrate by investigating electron and hole polaron formation in alkali halides and metal oxides and peroxides. We outline refinements of our scheme and extensions to compute transport in the polaron hopping regime.</description><subject>Density functional calculations</subject><subject>Electron-phonon coupling</subject><subject>First-principles calculations</subject><subject>Insulators</subject><subject>MATERIALS SCIENCE</subject><subject>Materials Science, Multidisciplinary</subject><subject>Polarons</subject><subject>Science & Technology</subject><subject>Semiconductor compounds</subject><subject>Technology</subject><issn>2475-9953</issn><issn>2475-9953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkMFKxDAQhosouOi-Q_QqXZOmSZujFFeFFUXWc5mmCRvpJiWJyvr0Zq2IePI0A_P9M8mXZWcELwjB9PJxswtP6u0eovIGhrBgC8xpjdlBNivKiuVCMHr4qz_O5iG8YIxJzUhRiVm2XoI0g0LQIWNNNA7BOHoHcoO08yioQeeDkzCYD9Wj0Q3gnQ1Ie7dFEqyzJs1Q9GBD4reQNthwmh3p9Bw1_64n2fPyet3c5quHm7vmapVLSkXMKRdABFBcc172neKikhg067TEWpZY1yC0qpkuAQMBJWjZE-g7Tnmpy66jJ9n5tNeFaNogTVRyI521SsY2fRHXdZEgMUHSuxC80u3ozRb8riW43Wts_2psWTtpTNmLKfuuOqfTAWWl-sknj5yzShQF3itNdP1_ujHxS1bjXm2kn58xjhg</recordid><startdate>20210624</startdate><enddate>20210624</enddate><creator>Lee, Nien-En</creator><creator>Chen, Hsiao-Yi</creator><creator>Zhou, Jin-Jian</creator><creator>Bernardi, Marco</creator><general>Amer Physical Soc</general><general>American Physical Society (APS)</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1962-5767</orcidid><orcidid>https://orcid.org/0000-0001-7289-9666</orcidid><orcidid>https://orcid.org/0000000319625767</orcidid><orcidid>https://orcid.org/0000000172899666</orcidid></search><sort><creationdate>20210624</creationdate><title>Facile ab initio approach for self-localized polarons from canonical transformations</title><author>Lee, Nien-En ; Chen, Hsiao-Yi ; Zhou, Jin-Jian ; Bernardi, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-369a19a308664dbe697c0af5bfc0fc40f8a9fe85f4a0a1ae934d1adb6364f4bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Density functional calculations</topic><topic>Electron-phonon coupling</topic><topic>First-principles calculations</topic><topic>Insulators</topic><topic>MATERIALS SCIENCE</topic><topic>Materials Science, Multidisciplinary</topic><topic>Polarons</topic><topic>Science & Technology</topic><topic>Semiconductor compounds</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Nien-En</creatorcontrib><creatorcontrib>Chen, Hsiao-Yi</creatorcontrib><creatorcontrib>Zhou, Jin-Jian</creatorcontrib><creatorcontrib>Bernardi, Marco</creatorcontrib><creatorcontrib>California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Nien-En</au><au>Chen, Hsiao-Yi</au><au>Zhou, Jin-Jian</au><au>Bernardi, Marco</au><aucorp>California Institute of Technology (CalTech), Pasadena, CA (United States)</aucorp><aucorp>Univ. of California, Oakland, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facile ab initio approach for self-localized polarons from canonical transformations</atitle><jtitle>Physical review materials</jtitle><stitle>PHYS REV MATER</stitle><date>2021-06-24</date><risdate>2021</risdate><volume>5</volume><issue>6</issue><artnum>063805</artnum><issn>2475-9953</issn><eissn>2475-9953</eissn><abstract>Electronic states in a crystal can localize due to strong electron-phonon (e-ph) interactions, forming so-called small polarons. Methods to predict the formation and energetics of small polarons are either computationally costly or not geared toward quantitative predictions. Here we show a formalism based on canonical transformations to compute the polaron formation energy and wave function using ab initio e-ph interactions. Comparison of the calculated polaron and band-edge energies allows us to determine whether charge carriers in a material favor a localized small polaron over a delocalized Bloch state. Due to its low computational cost, our approach enables efficient studies of the formation and energetics of small polarons, as we demonstrate by investigating electron and hole polaron formation in alkali halides and metal oxides and peroxides. We outline refinements of our scheme and extensions to compute transport in the polaron hopping regime.</abstract><cop>COLLEGE PK</cop><pub>Amer Physical Soc</pub><doi>10.1103/PhysRevMaterials.5.063805</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1962-5767</orcidid><orcidid>https://orcid.org/0000-0001-7289-9666</orcidid><orcidid>https://orcid.org/0000000319625767</orcidid><orcidid>https://orcid.org/0000000172899666</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2475-9953 |
ispartof | Physical review materials, 2021-06, Vol.5 (6), Article 063805 |
issn | 2475-9953 2475-9953 |
language | eng |
recordid | cdi_osti_scitechconnect_1850882 |
source | American Physical Society Journals |
subjects | Density functional calculations Electron-phonon coupling First-principles calculations Insulators MATERIALS SCIENCE Materials Science, Multidisciplinary Polarons Science & Technology Semiconductor compounds Technology |
title | Facile ab initio approach for self-localized polarons from canonical transformations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A24%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-webofscience_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facile%20ab%20initio%20approach%20for%20self-localized%20polarons%20from%20canonical%20transformations&rft.jtitle=Physical%20review%20materials&rft.au=Lee,%20Nien-En&rft.aucorp=California%20Institute%20of%20Technology%20(CalTech),%20Pasadena,%20CA%20(United%20States)&rft.date=2021-06-24&rft.volume=5&rft.issue=6&rft.artnum=063805&rft.issn=2475-9953&rft.eissn=2475-9953&rft_id=info:doi/10.1103/PhysRevMaterials.5.063805&rft_dat=%3Cwebofscience_osti_%3E000665792200001%3C/webofscience_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |