High‐Throughput Screening for Phase‐Change Memory Materials

Phase change memory (PCM) is an emerging non‐volatile data storage technology concerned by the semiconductor industry. To improve the performances, previous efforts have mainly focused on partially replacing or doping elements in the flagship Ge‐Sb‐Te (GST) alloy based on experimental “trial‐and‐err...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-05, Vol.31 (21), p.n/a
Hauptverfasser: Liu, Yu‐Ting, Li, Xian‐Bin, Zheng, Hui, Chen, Nian‐Ke, Wang, Xue‐Peng, Zhang, Xu‐Lin, Sun, Hong‐Bo, Zhang, Shengbai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 21
container_start_page
container_title Advanced functional materials
container_volume 31
creator Liu, Yu‐Ting
Li, Xian‐Bin
Zheng, Hui
Chen, Nian‐Ke
Wang, Xue‐Peng
Zhang, Xu‐Lin
Sun, Hong‐Bo
Zhang, Shengbai
description Phase change memory (PCM) is an emerging non‐volatile data storage technology concerned by the semiconductor industry. To improve the performances, previous efforts have mainly focused on partially replacing or doping elements in the flagship Ge‐Sb‐Te (GST) alloy based on experimental “trial‐and‐error” methods. Here, the current largest scale PCM materials searching is reported, starting with 124 515 candidate materials, using a rational high‐throughput screening strategy consisting of criteria related to PCM characteristics. In the results, there are 158 candidates screened for PCM materials, of which ≈68% are not employed. By further analyses, including cohesive energy, bond angle analyses, and Born effective charge, there are 52 materials with properties similar to the GST system, including Ge2Bi2Te5, GeAs4Te7, GeAs2Te4, so on and other candidates that have not been reported, such as TlBiTe2, TlSbTe2, CdPb3Se4, etc. Compared with GST, materials with close cohesive energy include AgBiTe2, TlSbTe2, As2Te3, TlBiTe2, etc., indicating possible low power consumption. Through further melt‐quenching molecular dynamic calculation and structural/electronic analyses, Ge2Bi2Te5, CdPb3Se4, MnBi2Te4, and TlBiTe2 are found suitable for optical/electrical PCM applications, which further verifies the effectiveness of this strategy. The present study will accelerate the exploration and development of advanced PCM materials for current and future big‐data applications. Phase‐change memory (PCM) is a state‐of‐the‐art nonvolatile data memory technology depending on transitions between amorphous and crystalline phases of PCM materials. To explore advanced material candidates, the current largest scale material searching is carried out using a rational high‐throughput screening strategy consisting of criteria related to PCM characteristics. A series of unreported materials are found potentially suitable for PCM applications.
doi_str_mv 10.1002/adfm.202009803
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1850825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2531172530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4103-e9ba1043329af998f5398477e156be5035419aab7beb9f26169d939b12a28e3e3</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKtXz4uet06S3W5yklKtFVoUrOAtZLezf0q7qcku0psfwc_oJzFlpR69zBuY3xsej5BLCgMKwG70Mt8MGDAAKYAfkR4d0mHIgYnjw07fTsmZcysAmiQ86pHbaVWU359fi9Katii3bRO8ZBaxruoiyI0Nnkvt0APjUtcFBnPcGLsL5rpBW-m1OycnuRe8-NU-eZ3cL8bTcPb08DgezcIsosBDlKmmEHHOpM6lFHnMpYiSBGk8TDEGHkdUap0mKaYyZz6sXEouU8o0E8iR98lV99e4plIuqxrMyszUNWaNoiIGwWIPXXfQ1pr3Fl2jVqa1tc-l_JXSxE_w1KCjMmucs5irra022u4UBbVvUu2bVIcmvUF2ho9qjbt_aDW6m8z_vD8ud3db</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2531172530</pqid></control><display><type>article</type><title>High‐Throughput Screening for Phase‐Change Memory Materials</title><source>Access via Wiley Online Library</source><creator>Liu, Yu‐Ting ; Li, Xian‐Bin ; Zheng, Hui ; Chen, Nian‐Ke ; Wang, Xue‐Peng ; Zhang, Xu‐Lin ; Sun, Hong‐Bo ; Zhang, Shengbai</creator><creatorcontrib>Liu, Yu‐Ting ; Li, Xian‐Bin ; Zheng, Hui ; Chen, Nian‐Ke ; Wang, Xue‐Peng ; Zhang, Xu‐Lin ; Sun, Hong‐Bo ; Zhang, Shengbai ; Rensselaer Polytechnic Inst., Troy, NY (United States)</creatorcontrib><description>Phase change memory (PCM) is an emerging non‐volatile data storage technology concerned by the semiconductor industry. To improve the performances, previous efforts have mainly focused on partially replacing or doping elements in the flagship Ge‐Sb‐Te (GST) alloy based on experimental “trial‐and‐error” methods. Here, the current largest scale PCM materials searching is reported, starting with 124 515 candidate materials, using a rational high‐throughput screening strategy consisting of criteria related to PCM characteristics. In the results, there are 158 candidates screened for PCM materials, of which ≈68% are not employed. By further analyses, including cohesive energy, bond angle analyses, and Born effective charge, there are 52 materials with properties similar to the GST system, including Ge2Bi2Te5, GeAs4Te7, GeAs2Te4, so on and other candidates that have not been reported, such as TlBiTe2, TlSbTe2, CdPb3Se4, etc. Compared with GST, materials with close cohesive energy include AgBiTe2, TlSbTe2, As2Te3, TlBiTe2, etc., indicating possible low power consumption. Through further melt‐quenching molecular dynamic calculation and structural/electronic analyses, Ge2Bi2Te5, CdPb3Se4, MnBi2Te4, and TlBiTe2 are found suitable for optical/electrical PCM applications, which further verifies the effectiveness of this strategy. The present study will accelerate the exploration and development of advanced PCM materials for current and future big‐data applications. Phase‐change memory (PCM) is a state‐of‐the‐art nonvolatile data memory technology depending on transitions between amorphous and crystalline phases of PCM materials. To explore advanced material candidates, the current largest scale material searching is carried out using a rational high‐throughput screening strategy consisting of criteria related to PCM characteristics. A series of unreported materials are found potentially suitable for PCM applications.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202009803</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Antimony ; Charge materials ; Chemistry ; Data storage ; high‐throughput material screening ; Materials Science ; Materials selection ; Molecular dynamics ; non‐volatile memory ; phase change memory materials ; Physics ; Power consumption ; Science &amp; Technology - Other Topics ; Screening ; Tellurium</subject><ispartof>Advanced functional materials, 2021-05, Vol.31 (21), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4103-e9ba1043329af998f5398477e156be5035419aab7beb9f26169d939b12a28e3e3</citedby><cites>FETCH-LOGICAL-c4103-e9ba1043329af998f5398477e156be5035419aab7beb9f26169d939b12a28e3e3</cites><orcidid>0000-0002-6957-5721 ; 0000-0002-0046-2016 ; 0000-0003-2127-8610 ; 0000000269575721 ; 0000000200462016 ; 0000000321278610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202009803$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202009803$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1850825$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yu‐Ting</creatorcontrib><creatorcontrib>Li, Xian‐Bin</creatorcontrib><creatorcontrib>Zheng, Hui</creatorcontrib><creatorcontrib>Chen, Nian‐Ke</creatorcontrib><creatorcontrib>Wang, Xue‐Peng</creatorcontrib><creatorcontrib>Zhang, Xu‐Lin</creatorcontrib><creatorcontrib>Sun, Hong‐Bo</creatorcontrib><creatorcontrib>Zhang, Shengbai</creatorcontrib><creatorcontrib>Rensselaer Polytechnic Inst., Troy, NY (United States)</creatorcontrib><title>High‐Throughput Screening for Phase‐Change Memory Materials</title><title>Advanced functional materials</title><description>Phase change memory (PCM) is an emerging non‐volatile data storage technology concerned by the semiconductor industry. To improve the performances, previous efforts have mainly focused on partially replacing or doping elements in the flagship Ge‐Sb‐Te (GST) alloy based on experimental “trial‐and‐error” methods. Here, the current largest scale PCM materials searching is reported, starting with 124 515 candidate materials, using a rational high‐throughput screening strategy consisting of criteria related to PCM characteristics. In the results, there are 158 candidates screened for PCM materials, of which ≈68% are not employed. By further analyses, including cohesive energy, bond angle analyses, and Born effective charge, there are 52 materials with properties similar to the GST system, including Ge2Bi2Te5, GeAs4Te7, GeAs2Te4, so on and other candidates that have not been reported, such as TlBiTe2, TlSbTe2, CdPb3Se4, etc. Compared with GST, materials with close cohesive energy include AgBiTe2, TlSbTe2, As2Te3, TlBiTe2, etc., indicating possible low power consumption. Through further melt‐quenching molecular dynamic calculation and structural/electronic analyses, Ge2Bi2Te5, CdPb3Se4, MnBi2Te4, and TlBiTe2 are found suitable for optical/electrical PCM applications, which further verifies the effectiveness of this strategy. The present study will accelerate the exploration and development of advanced PCM materials for current and future big‐data applications. Phase‐change memory (PCM) is a state‐of‐the‐art nonvolatile data memory technology depending on transitions between amorphous and crystalline phases of PCM materials. To explore advanced material candidates, the current largest scale material searching is carried out using a rational high‐throughput screening strategy consisting of criteria related to PCM characteristics. A series of unreported materials are found potentially suitable for PCM applications.</description><subject>Antimony</subject><subject>Charge materials</subject><subject>Chemistry</subject><subject>Data storage</subject><subject>high‐throughput material screening</subject><subject>Materials Science</subject><subject>Materials selection</subject><subject>Molecular dynamics</subject><subject>non‐volatile memory</subject><subject>phase change memory materials</subject><subject>Physics</subject><subject>Power consumption</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Screening</subject><subject>Tellurium</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKtXz4uet06S3W5yklKtFVoUrOAtZLezf0q7qcku0psfwc_oJzFlpR69zBuY3xsej5BLCgMKwG70Mt8MGDAAKYAfkR4d0mHIgYnjw07fTsmZcysAmiQ86pHbaVWU359fi9Katii3bRO8ZBaxruoiyI0Nnkvt0APjUtcFBnPcGLsL5rpBW-m1OycnuRe8-NU-eZ3cL8bTcPb08DgezcIsosBDlKmmEHHOpM6lFHnMpYiSBGk8TDEGHkdUap0mKaYyZz6sXEouU8o0E8iR98lV99e4plIuqxrMyszUNWaNoiIGwWIPXXfQ1pr3Fl2jVqa1tc-l_JXSxE_w1KCjMmucs5irra022u4UBbVvUu2bVIcmvUF2ho9qjbt_aDW6m8z_vD8ud3db</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Liu, Yu‐Ting</creator><creator>Li, Xian‐Bin</creator><creator>Zheng, Hui</creator><creator>Chen, Nian‐Ke</creator><creator>Wang, Xue‐Peng</creator><creator>Zhang, Xu‐Lin</creator><creator>Sun, Hong‐Bo</creator><creator>Zhang, Shengbai</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6957-5721</orcidid><orcidid>https://orcid.org/0000-0002-0046-2016</orcidid><orcidid>https://orcid.org/0000-0003-2127-8610</orcidid><orcidid>https://orcid.org/0000000269575721</orcidid><orcidid>https://orcid.org/0000000200462016</orcidid><orcidid>https://orcid.org/0000000321278610</orcidid></search><sort><creationdate>20210501</creationdate><title>High‐Throughput Screening for Phase‐Change Memory Materials</title><author>Liu, Yu‐Ting ; Li, Xian‐Bin ; Zheng, Hui ; Chen, Nian‐Ke ; Wang, Xue‐Peng ; Zhang, Xu‐Lin ; Sun, Hong‐Bo ; Zhang, Shengbai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4103-e9ba1043329af998f5398477e156be5035419aab7beb9f26169d939b12a28e3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antimony</topic><topic>Charge materials</topic><topic>Chemistry</topic><topic>Data storage</topic><topic>high‐throughput material screening</topic><topic>Materials Science</topic><topic>Materials selection</topic><topic>Molecular dynamics</topic><topic>non‐volatile memory</topic><topic>phase change memory materials</topic><topic>Physics</topic><topic>Power consumption</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Screening</topic><topic>Tellurium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yu‐Ting</creatorcontrib><creatorcontrib>Li, Xian‐Bin</creatorcontrib><creatorcontrib>Zheng, Hui</creatorcontrib><creatorcontrib>Chen, Nian‐Ke</creatorcontrib><creatorcontrib>Wang, Xue‐Peng</creatorcontrib><creatorcontrib>Zhang, Xu‐Lin</creatorcontrib><creatorcontrib>Sun, Hong‐Bo</creatorcontrib><creatorcontrib>Zhang, Shengbai</creatorcontrib><creatorcontrib>Rensselaer Polytechnic Inst., Troy, NY (United States)</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yu‐Ting</au><au>Li, Xian‐Bin</au><au>Zheng, Hui</au><au>Chen, Nian‐Ke</au><au>Wang, Xue‐Peng</au><au>Zhang, Xu‐Lin</au><au>Sun, Hong‐Bo</au><au>Zhang, Shengbai</au><aucorp>Rensselaer Polytechnic Inst., Troy, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‐Throughput Screening for Phase‐Change Memory Materials</atitle><jtitle>Advanced functional materials</jtitle><date>2021-05-01</date><risdate>2021</risdate><volume>31</volume><issue>21</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Phase change memory (PCM) is an emerging non‐volatile data storage technology concerned by the semiconductor industry. To improve the performances, previous efforts have mainly focused on partially replacing or doping elements in the flagship Ge‐Sb‐Te (GST) alloy based on experimental “trial‐and‐error” methods. Here, the current largest scale PCM materials searching is reported, starting with 124 515 candidate materials, using a rational high‐throughput screening strategy consisting of criteria related to PCM characteristics. In the results, there are 158 candidates screened for PCM materials, of which ≈68% are not employed. By further analyses, including cohesive energy, bond angle analyses, and Born effective charge, there are 52 materials with properties similar to the GST system, including Ge2Bi2Te5, GeAs4Te7, GeAs2Te4, so on and other candidates that have not been reported, such as TlBiTe2, TlSbTe2, CdPb3Se4, etc. Compared with GST, materials with close cohesive energy include AgBiTe2, TlSbTe2, As2Te3, TlBiTe2, etc., indicating possible low power consumption. Through further melt‐quenching molecular dynamic calculation and structural/electronic analyses, Ge2Bi2Te5, CdPb3Se4, MnBi2Te4, and TlBiTe2 are found suitable for optical/electrical PCM applications, which further verifies the effectiveness of this strategy. The present study will accelerate the exploration and development of advanced PCM materials for current and future big‐data applications. Phase‐change memory (PCM) is a state‐of‐the‐art nonvolatile data memory technology depending on transitions between amorphous and crystalline phases of PCM materials. To explore advanced material candidates, the current largest scale material searching is carried out using a rational high‐throughput screening strategy consisting of criteria related to PCM characteristics. A series of unreported materials are found potentially suitable for PCM applications.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202009803</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6957-5721</orcidid><orcidid>https://orcid.org/0000-0002-0046-2016</orcidid><orcidid>https://orcid.org/0000-0003-2127-8610</orcidid><orcidid>https://orcid.org/0000000269575721</orcidid><orcidid>https://orcid.org/0000000200462016</orcidid><orcidid>https://orcid.org/0000000321278610</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-05, Vol.31 (21), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_osti_scitechconnect_1850825
source Access via Wiley Online Library
subjects Antimony
Charge materials
Chemistry
Data storage
high‐throughput material screening
Materials Science
Materials selection
Molecular dynamics
non‐volatile memory
phase change memory materials
Physics
Power consumption
Science & Technology - Other Topics
Screening
Tellurium
title High‐Throughput Screening for Phase‐Change Memory Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A59%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%90Throughput%20Screening%20for%20Phase%E2%80%90Change%20Memory%20Materials&rft.jtitle=Advanced%20functional%20materials&rft.au=Liu,%20Yu%E2%80%90Ting&rft.aucorp=Rensselaer%20Polytechnic%20Inst.,%20Troy,%20NY%20(United%20States)&rft.date=2021-05-01&rft.volume=31&rft.issue=21&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202009803&rft_dat=%3Cproquest_osti_%3E2531172530%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2531172530&rft_id=info:pmid/&rfr_iscdi=true