Composite fermion nonlinear sigma models

We study particle-hole symmetry at the integer quantum Hall plateau transition using composite fermion mean-field theory. Because this theory implicitly includes some electron-electron interactions, it also has applications to certain fractional quantum Hall plateau transitions. Previous work [P. Ku...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2021-09, Vol.104 (12), p.1, Article 125119
Hauptverfasser: Lee, Chao-Jung, Kumar, Prashant, Mulligan, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 1
container_title Physical review. B
container_volume 104
creator Lee, Chao-Jung
Kumar, Prashant
Mulligan, Michael
description We study particle-hole symmetry at the integer quantum Hall plateau transition using composite fermion mean-field theory. Because this theory implicitly includes some electron-electron interactions, it also has applications to certain fractional quantum Hall plateau transitions. Previous work [P. Kumar et al., Phys. Rev. B 100, 235124 (2019)] using this approach showed that the diffusive quantum criticality of this transition is described by a nonlinear sigma model with topological θ = π term. This result, which holds for both the Dirac and Halperin, Lee, and Read composite fermion theories, signifies an emergent particle-hole (reflection) symmetry of the integer (fractional) quantum Hall transition. Here we consider the stability of this result to various particle-hole symmetry-violating perturbations. In the presence of quenched disorder that preserves particle-hole symmetry, we find that finite longitudinal conductivity at this transition requires the vanishing of a symmetry-violating composite fermion effective mass, which if present would generally lead to θ ≠ π and a corresponding violation of particle-hole symmetric electrical transport ... When the disorder does not preserve particle-hole symmetry, we find that θ can vary continuously within the diffusive regime. Our results call for further study of the universality of the quantum Hall plateau transition.(ProQuest: … denotes formulae omitted.)
doi_str_mv 10.1103/PhysRevB.104.125119
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1850797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582834907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-fef563b2be34490c1811bae618725a51b9635749200a46554f49055f248709f13</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWGp_gZtBN26m3pvHzGSpxRcUFNF1yMTETukkNZkK_femjLq6h8vH4eMQco4wRwR2_bLap1f7fTtH4HOkAlEekQnllSylrOTxfxZwSmYprQEAK5A1yAm5WoR-G1I32MLZ2HfBFz74TeetjkXqPntd9OHDbtIZOXF6k-zs907J-_3d2-KxXD4_PC1ulqVhwIfSWScq1tLWMs4lGGwQW20rbGoqtMBWVkzUXFIAzSshuMuUEI7yJvs4ZFNyMfaGNHQqmWxmViZ4b82gsBFQyzpDlyO0jeFrZ9Og1mEXffZSVDS0Ybn0QLGRMjGkFK1T29j1Ou4VgjpMp_6myw-uxunYD57JYAc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582834907</pqid></control><display><type>article</type><title>Composite fermion nonlinear sigma models</title><source>American Physical Society Journals</source><creator>Lee, Chao-Jung ; Kumar, Prashant ; Mulligan, Michael</creator><creatorcontrib>Lee, Chao-Jung ; Kumar, Prashant ; Mulligan, Michael ; Univ. of California, Riverside, CA (United States) ; Princeton Univ., NJ (United States)</creatorcontrib><description>We study particle-hole symmetry at the integer quantum Hall plateau transition using composite fermion mean-field theory. Because this theory implicitly includes some electron-electron interactions, it also has applications to certain fractional quantum Hall plateau transitions. Previous work [P. Kumar et al., Phys. Rev. B 100, 235124 (2019)] using this approach showed that the diffusive quantum criticality of this transition is described by a nonlinear sigma model with topological θ = π term. This result, which holds for both the Dirac and Halperin, Lee, and Read composite fermion theories, signifies an emergent particle-hole (reflection) symmetry of the integer (fractional) quantum Hall transition. Here we consider the stability of this result to various particle-hole symmetry-violating perturbations. In the presence of quenched disorder that preserves particle-hole symmetry, we find that finite longitudinal conductivity at this transition requires the vanishing of a symmetry-violating composite fermion effective mass, which if present would generally lead to θ ≠ π and a corresponding violation of particle-hole symmetric electrical transport ... When the disorder does not preserve particle-hole symmetry, we find that θ can vary continuously within the diffusive regime. Our results call for further study of the universality of the quantum Hall plateau transition.(ProQuest: … denotes formulae omitted.)</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.104.125119</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Composite fermions ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Electrical conductivity ; Electrons ; Fermions ; Fractional quantum Hall effect ; Integer quantum Hall effect ; Integers ; Localization ; Materials Science ; Mean field theory ; Perturbation ; Physics ; Quantum theory ; Sigma models ; Symmetry ; Topological phase transition</subject><ispartof>Physical review. B, 2021-09, Vol.104 (12), p.1, Article 125119</ispartof><rights>Copyright American Physical Society Sep 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-fef563b2be34490c1811bae618725a51b9635749200a46554f49055f248709f13</citedby><cites>FETCH-LOGICAL-c304t-fef563b2be34490c1811bae618725a51b9635749200a46554f49055f248709f13</cites><orcidid>0000-0003-3339-1522 ; 0000000333391522</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,2865,2866,27911,27912</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1850797$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Chao-Jung</creatorcontrib><creatorcontrib>Kumar, Prashant</creatorcontrib><creatorcontrib>Mulligan, Michael</creatorcontrib><creatorcontrib>Univ. of California, Riverside, CA (United States)</creatorcontrib><creatorcontrib>Princeton Univ., NJ (United States)</creatorcontrib><title>Composite fermion nonlinear sigma models</title><title>Physical review. B</title><description>We study particle-hole symmetry at the integer quantum Hall plateau transition using composite fermion mean-field theory. Because this theory implicitly includes some electron-electron interactions, it also has applications to certain fractional quantum Hall plateau transitions. Previous work [P. Kumar et al., Phys. Rev. B 100, 235124 (2019)] using this approach showed that the diffusive quantum criticality of this transition is described by a nonlinear sigma model with topological θ = π term. This result, which holds for both the Dirac and Halperin, Lee, and Read composite fermion theories, signifies an emergent particle-hole (reflection) symmetry of the integer (fractional) quantum Hall transition. Here we consider the stability of this result to various particle-hole symmetry-violating perturbations. In the presence of quenched disorder that preserves particle-hole symmetry, we find that finite longitudinal conductivity at this transition requires the vanishing of a symmetry-violating composite fermion effective mass, which if present would generally lead to θ ≠ π and a corresponding violation of particle-hole symmetric electrical transport ... When the disorder does not preserve particle-hole symmetry, we find that θ can vary continuously within the diffusive regime. Our results call for further study of the universality of the quantum Hall plateau transition.(ProQuest: … denotes formulae omitted.)</description><subject>Composite fermions</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Electrical conductivity</subject><subject>Electrons</subject><subject>Fermions</subject><subject>Fractional quantum Hall effect</subject><subject>Integer quantum Hall effect</subject><subject>Integers</subject><subject>Localization</subject><subject>Materials Science</subject><subject>Mean field theory</subject><subject>Perturbation</subject><subject>Physics</subject><subject>Quantum theory</subject><subject>Sigma models</subject><subject>Symmetry</subject><subject>Topological phase transition</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWGp_gZtBN26m3pvHzGSpxRcUFNF1yMTETukkNZkK_femjLq6h8vH4eMQco4wRwR2_bLap1f7fTtH4HOkAlEekQnllSylrOTxfxZwSmYprQEAK5A1yAm5WoR-G1I32MLZ2HfBFz74TeetjkXqPntd9OHDbtIZOXF6k-zs907J-_3d2-KxXD4_PC1ulqVhwIfSWScq1tLWMs4lGGwQW20rbGoqtMBWVkzUXFIAzSshuMuUEI7yJvs4ZFNyMfaGNHQqmWxmViZ4b82gsBFQyzpDlyO0jeFrZ9Og1mEXffZSVDS0Ybn0QLGRMjGkFK1T29j1Ou4VgjpMp_6myw-uxunYD57JYAc</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Lee, Chao-Jung</creator><creator>Kumar, Prashant</creator><creator>Mulligan, Michael</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3339-1522</orcidid><orcidid>https://orcid.org/0000000333391522</orcidid></search><sort><creationdate>20210915</creationdate><title>Composite fermion nonlinear sigma models</title><author>Lee, Chao-Jung ; Kumar, Prashant ; Mulligan, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-fef563b2be34490c1811bae618725a51b9635749200a46554f49055f248709f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Composite fermions</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Electrical conductivity</topic><topic>Electrons</topic><topic>Fermions</topic><topic>Fractional quantum Hall effect</topic><topic>Integer quantum Hall effect</topic><topic>Integers</topic><topic>Localization</topic><topic>Materials Science</topic><topic>Mean field theory</topic><topic>Perturbation</topic><topic>Physics</topic><topic>Quantum theory</topic><topic>Sigma models</topic><topic>Symmetry</topic><topic>Topological phase transition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Chao-Jung</creatorcontrib><creatorcontrib>Kumar, Prashant</creatorcontrib><creatorcontrib>Mulligan, Michael</creatorcontrib><creatorcontrib>Univ. of California, Riverside, CA (United States)</creatorcontrib><creatorcontrib>Princeton Univ., NJ (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Chao-Jung</au><au>Kumar, Prashant</au><au>Mulligan, Michael</au><aucorp>Univ. of California, Riverside, CA (United States)</aucorp><aucorp>Princeton Univ., NJ (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composite fermion nonlinear sigma models</atitle><jtitle>Physical review. B</jtitle><date>2021-09-15</date><risdate>2021</risdate><volume>104</volume><issue>12</issue><spage>1</spage><pages>1-</pages><artnum>125119</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We study particle-hole symmetry at the integer quantum Hall plateau transition using composite fermion mean-field theory. Because this theory implicitly includes some electron-electron interactions, it also has applications to certain fractional quantum Hall plateau transitions. Previous work [P. Kumar et al., Phys. Rev. B 100, 235124 (2019)] using this approach showed that the diffusive quantum criticality of this transition is described by a nonlinear sigma model with topological θ = π term. This result, which holds for both the Dirac and Halperin, Lee, and Read composite fermion theories, signifies an emergent particle-hole (reflection) symmetry of the integer (fractional) quantum Hall transition. Here we consider the stability of this result to various particle-hole symmetry-violating perturbations. In the presence of quenched disorder that preserves particle-hole symmetry, we find that finite longitudinal conductivity at this transition requires the vanishing of a symmetry-violating composite fermion effective mass, which if present would generally lead to θ ≠ π and a corresponding violation of particle-hole symmetric electrical transport ... When the disorder does not preserve particle-hole symmetry, we find that θ can vary continuously within the diffusive regime. Our results call for further study of the universality of the quantum Hall plateau transition.(ProQuest: … denotes formulae omitted.)</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.104.125119</doi><orcidid>https://orcid.org/0000-0003-3339-1522</orcidid><orcidid>https://orcid.org/0000000333391522</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2021-09, Vol.104 (12), p.1, Article 125119
issn 2469-9950
2469-9969
language eng
recordid cdi_osti_scitechconnect_1850797
source American Physical Society Journals
subjects Composite fermions
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Electrical conductivity
Electrons
Fermions
Fractional quantum Hall effect
Integer quantum Hall effect
Integers
Localization
Materials Science
Mean field theory
Perturbation
Physics
Quantum theory
Sigma models
Symmetry
Topological phase transition
title Composite fermion nonlinear sigma models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A32%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composite%20fermion%20nonlinear%20sigma%20models&rft.jtitle=Physical%20review.%20B&rft.au=Lee,%20Chao-Jung&rft.aucorp=Univ.%20of%20California,%20Riverside,%20CA%20(United%20States)&rft.date=2021-09-15&rft.volume=104&rft.issue=12&rft.spage=1&rft.pages=1-&rft.artnum=125119&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.104.125119&rft_dat=%3Cproquest_osti_%3E2582834907%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582834907&rft_id=info:pmid/&rfr_iscdi=true