Composite fermion nonlinear sigma models
We study particle-hole symmetry at the integer quantum Hall plateau transition using composite fermion mean-field theory. Because this theory implicitly includes some electron-electron interactions, it also has applications to certain fractional quantum Hall plateau transitions. Previous work [P. Ku...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2021-09, Vol.104 (12), p.1, Article 125119 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 1 |
container_title | Physical review. B |
container_volume | 104 |
creator | Lee, Chao-Jung Kumar, Prashant Mulligan, Michael |
description | We study particle-hole symmetry at the integer quantum Hall plateau transition using composite fermion mean-field theory. Because this theory implicitly includes some electron-electron interactions, it also has applications to certain fractional quantum Hall plateau transitions. Previous work [P. Kumar et al., Phys. Rev. B 100, 235124 (2019)] using this approach showed that the diffusive quantum criticality of this transition is described by a nonlinear sigma model with topological θ = π term. This result, which holds for both the Dirac and Halperin, Lee, and Read composite fermion theories, signifies an emergent particle-hole (reflection) symmetry of the integer (fractional) quantum Hall transition. Here we consider the stability of this result to various particle-hole symmetry-violating perturbations. In the presence of quenched disorder that preserves particle-hole symmetry, we find that finite longitudinal conductivity at this transition requires the vanishing of a symmetry-violating composite fermion effective mass, which if present would generally lead to θ ≠ π and a corresponding violation of particle-hole symmetric electrical transport ... When the disorder does not preserve particle-hole symmetry, we find that θ can vary continuously within the diffusive regime. Our results call for further study of the universality of the quantum Hall plateau transition.(ProQuest: … denotes formulae omitted.) |
doi_str_mv | 10.1103/PhysRevB.104.125119 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1850797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582834907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-fef563b2be34490c1811bae618725a51b9635749200a46554f49055f248709f13</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWGp_gZtBN26m3pvHzGSpxRcUFNF1yMTETukkNZkK_femjLq6h8vH4eMQco4wRwR2_bLap1f7fTtH4HOkAlEekQnllSylrOTxfxZwSmYprQEAK5A1yAm5WoR-G1I32MLZ2HfBFz74TeetjkXqPntd9OHDbtIZOXF6k-zs907J-_3d2-KxXD4_PC1ulqVhwIfSWScq1tLWMs4lGGwQW20rbGoqtMBWVkzUXFIAzSshuMuUEI7yJvs4ZFNyMfaGNHQqmWxmViZ4b82gsBFQyzpDlyO0jeFrZ9Og1mEXffZSVDS0Ybn0QLGRMjGkFK1T29j1Ou4VgjpMp_6myw-uxunYD57JYAc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582834907</pqid></control><display><type>article</type><title>Composite fermion nonlinear sigma models</title><source>American Physical Society Journals</source><creator>Lee, Chao-Jung ; Kumar, Prashant ; Mulligan, Michael</creator><creatorcontrib>Lee, Chao-Jung ; Kumar, Prashant ; Mulligan, Michael ; Univ. of California, Riverside, CA (United States) ; Princeton Univ., NJ (United States)</creatorcontrib><description>We study particle-hole symmetry at the integer quantum Hall plateau transition using composite fermion mean-field theory. Because this theory implicitly includes some electron-electron interactions, it also has applications to certain fractional quantum Hall plateau transitions. Previous work [P. Kumar et al., Phys. Rev. B 100, 235124 (2019)] using this approach showed that the diffusive quantum criticality of this transition is described by a nonlinear sigma model with topological θ = π term. This result, which holds for both the Dirac and Halperin, Lee, and Read composite fermion theories, signifies an emergent particle-hole (reflection) symmetry of the integer (fractional) quantum Hall transition. Here we consider the stability of this result to various particle-hole symmetry-violating perturbations. In the presence of quenched disorder that preserves particle-hole symmetry, we find that finite longitudinal conductivity at this transition requires the vanishing of a symmetry-violating composite fermion effective mass, which if present would generally lead to θ ≠ π and a corresponding violation of particle-hole symmetric electrical transport ... When the disorder does not preserve particle-hole symmetry, we find that θ can vary continuously within the diffusive regime. Our results call for further study of the universality of the quantum Hall plateau transition.(ProQuest: … denotes formulae omitted.)</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.104.125119</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Composite fermions ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Electrical conductivity ; Electrons ; Fermions ; Fractional quantum Hall effect ; Integer quantum Hall effect ; Integers ; Localization ; Materials Science ; Mean field theory ; Perturbation ; Physics ; Quantum theory ; Sigma models ; Symmetry ; Topological phase transition</subject><ispartof>Physical review. B, 2021-09, Vol.104 (12), p.1, Article 125119</ispartof><rights>Copyright American Physical Society Sep 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-fef563b2be34490c1811bae618725a51b9635749200a46554f49055f248709f13</citedby><cites>FETCH-LOGICAL-c304t-fef563b2be34490c1811bae618725a51b9635749200a46554f49055f248709f13</cites><orcidid>0000-0003-3339-1522 ; 0000000333391522</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,2865,2866,27911,27912</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1850797$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Chao-Jung</creatorcontrib><creatorcontrib>Kumar, Prashant</creatorcontrib><creatorcontrib>Mulligan, Michael</creatorcontrib><creatorcontrib>Univ. of California, Riverside, CA (United States)</creatorcontrib><creatorcontrib>Princeton Univ., NJ (United States)</creatorcontrib><title>Composite fermion nonlinear sigma models</title><title>Physical review. B</title><description>We study particle-hole symmetry at the integer quantum Hall plateau transition using composite fermion mean-field theory. Because this theory implicitly includes some electron-electron interactions, it also has applications to certain fractional quantum Hall plateau transitions. Previous work [P. Kumar et al., Phys. Rev. B 100, 235124 (2019)] using this approach showed that the diffusive quantum criticality of this transition is described by a nonlinear sigma model with topological θ = π term. This result, which holds for both the Dirac and Halperin, Lee, and Read composite fermion theories, signifies an emergent particle-hole (reflection) symmetry of the integer (fractional) quantum Hall transition. Here we consider the stability of this result to various particle-hole symmetry-violating perturbations. In the presence of quenched disorder that preserves particle-hole symmetry, we find that finite longitudinal conductivity at this transition requires the vanishing of a symmetry-violating composite fermion effective mass, which if present would generally lead to θ ≠ π and a corresponding violation of particle-hole symmetric electrical transport ... When the disorder does not preserve particle-hole symmetry, we find that θ can vary continuously within the diffusive regime. Our results call for further study of the universality of the quantum Hall plateau transition.(ProQuest: … denotes formulae omitted.)</description><subject>Composite fermions</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Electrical conductivity</subject><subject>Electrons</subject><subject>Fermions</subject><subject>Fractional quantum Hall effect</subject><subject>Integer quantum Hall effect</subject><subject>Integers</subject><subject>Localization</subject><subject>Materials Science</subject><subject>Mean field theory</subject><subject>Perturbation</subject><subject>Physics</subject><subject>Quantum theory</subject><subject>Sigma models</subject><subject>Symmetry</subject><subject>Topological phase transition</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWGp_gZtBN26m3pvHzGSpxRcUFNF1yMTETukkNZkK_femjLq6h8vH4eMQco4wRwR2_bLap1f7fTtH4HOkAlEekQnllSylrOTxfxZwSmYprQEAK5A1yAm5WoR-G1I32MLZ2HfBFz74TeetjkXqPntd9OHDbtIZOXF6k-zs907J-_3d2-KxXD4_PC1ulqVhwIfSWScq1tLWMs4lGGwQW20rbGoqtMBWVkzUXFIAzSshuMuUEI7yJvs4ZFNyMfaGNHQqmWxmViZ4b82gsBFQyzpDlyO0jeFrZ9Og1mEXffZSVDS0Ybn0QLGRMjGkFK1T29j1Ou4VgjpMp_6myw-uxunYD57JYAc</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Lee, Chao-Jung</creator><creator>Kumar, Prashant</creator><creator>Mulligan, Michael</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3339-1522</orcidid><orcidid>https://orcid.org/0000000333391522</orcidid></search><sort><creationdate>20210915</creationdate><title>Composite fermion nonlinear sigma models</title><author>Lee, Chao-Jung ; Kumar, Prashant ; Mulligan, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-fef563b2be34490c1811bae618725a51b9635749200a46554f49055f248709f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Composite fermions</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Electrical conductivity</topic><topic>Electrons</topic><topic>Fermions</topic><topic>Fractional quantum Hall effect</topic><topic>Integer quantum Hall effect</topic><topic>Integers</topic><topic>Localization</topic><topic>Materials Science</topic><topic>Mean field theory</topic><topic>Perturbation</topic><topic>Physics</topic><topic>Quantum theory</topic><topic>Sigma models</topic><topic>Symmetry</topic><topic>Topological phase transition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Chao-Jung</creatorcontrib><creatorcontrib>Kumar, Prashant</creatorcontrib><creatorcontrib>Mulligan, Michael</creatorcontrib><creatorcontrib>Univ. of California, Riverside, CA (United States)</creatorcontrib><creatorcontrib>Princeton Univ., NJ (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Chao-Jung</au><au>Kumar, Prashant</au><au>Mulligan, Michael</au><aucorp>Univ. of California, Riverside, CA (United States)</aucorp><aucorp>Princeton Univ., NJ (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composite fermion nonlinear sigma models</atitle><jtitle>Physical review. B</jtitle><date>2021-09-15</date><risdate>2021</risdate><volume>104</volume><issue>12</issue><spage>1</spage><pages>1-</pages><artnum>125119</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We study particle-hole symmetry at the integer quantum Hall plateau transition using composite fermion mean-field theory. Because this theory implicitly includes some electron-electron interactions, it also has applications to certain fractional quantum Hall plateau transitions. Previous work [P. Kumar et al., Phys. Rev. B 100, 235124 (2019)] using this approach showed that the diffusive quantum criticality of this transition is described by a nonlinear sigma model with topological θ = π term. This result, which holds for both the Dirac and Halperin, Lee, and Read composite fermion theories, signifies an emergent particle-hole (reflection) symmetry of the integer (fractional) quantum Hall transition. Here we consider the stability of this result to various particle-hole symmetry-violating perturbations. In the presence of quenched disorder that preserves particle-hole symmetry, we find that finite longitudinal conductivity at this transition requires the vanishing of a symmetry-violating composite fermion effective mass, which if present would generally lead to θ ≠ π and a corresponding violation of particle-hole symmetric electrical transport ... When the disorder does not preserve particle-hole symmetry, we find that θ can vary continuously within the diffusive regime. Our results call for further study of the universality of the quantum Hall plateau transition.(ProQuest: … denotes formulae omitted.)</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.104.125119</doi><orcidid>https://orcid.org/0000-0003-3339-1522</orcidid><orcidid>https://orcid.org/0000000333391522</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2021-09, Vol.104 (12), p.1, Article 125119 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_osti_scitechconnect_1850797 |
source | American Physical Society Journals |
subjects | Composite fermions CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Electrical conductivity Electrons Fermions Fractional quantum Hall effect Integer quantum Hall effect Integers Localization Materials Science Mean field theory Perturbation Physics Quantum theory Sigma models Symmetry Topological phase transition |
title | Composite fermion nonlinear sigma models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A32%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composite%20fermion%20nonlinear%20sigma%20models&rft.jtitle=Physical%20review.%20B&rft.au=Lee,%20Chao-Jung&rft.aucorp=Univ.%20of%20California,%20Riverside,%20CA%20(United%20States)&rft.date=2021-09-15&rft.volume=104&rft.issue=12&rft.spage=1&rft.pages=1-&rft.artnum=125119&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.104.125119&rft_dat=%3Cproquest_osti_%3E2582834907%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582834907&rft_id=info:pmid/&rfr_iscdi=true |