Advancing the physics basis for quasi-helically symmetric stellarators

A new optimized quasi-helically symmetric configuration is described that has the desirable properties of improved energetic particle confinement, reduced turbulent transport by three-dimensional shaping and non-resonant divertor capabilities. The configuration presented in this paper is explicitly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of plasma physics 2020-10, Vol.86 (5), Article 905860506
Hauptverfasser: Bader, A., Faber, B. J., Schmitt, J. C., Anderson, D. T., Drevlak, M., Duff, J. M., Frerichs, H., Hegna, C. C., Kruger, T. G., Landreman, M., McKinney, I. J., Singh, L., Schroeder, J. M., Terry, P. W., Ware, A. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Journal of plasma physics
container_volume 86
creator Bader, A.
Faber, B. J.
Schmitt, J. C.
Anderson, D. T.
Drevlak, M.
Duff, J. M.
Frerichs, H.
Hegna, C. C.
Kruger, T. G.
Landreman, M.
McKinney, I. J.
Singh, L.
Schroeder, J. M.
Terry, P. W.
Ware, A. S.
description A new optimized quasi-helically symmetric configuration is described that has the desirable properties of improved energetic particle confinement, reduced turbulent transport by three-dimensional shaping and non-resonant divertor capabilities. The configuration presented in this paper is explicitly optimized for quasi-helical symmetry, energetic particle confinement, neoclassical confinement and stability near the axis. Post optimization, the configuration was evaluated for its performance with regard to energetic particle transport, ideal magnetohydrodynamic stability at various values of plasma pressure and ion temperature gradient instability induced turbulent transport. The effects of discrete coils on various confinement figures of merit, including energetic particle confinement, are determined by generating single-filament coils for the configuration. Preliminary divertor analysis shows that coils can be created that do not interfere with expansion of the vessel volume near the regions of outgoing heat flux, thus demonstrating the possibility of operating a non-resonant divertor.
doi_str_mv 10.1017/S0022377820000963
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1850066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022377820000963</cupid><sourcerecordid>2447486607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-d9e5d734b520392e9ebc2aedc1f6b52b8256e5d4e49bd6d41b48b074aa22edf23</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNui59Ukm012j6X4BQUP6jnkY7absh9tkgr7701pwYM4lxnmfd6XYRC6JfiBYCIePzCmtBCiojhVzYszNCOM17mosDhHs4OcH_RLdBXCJjEFpmKGnhf2Ww3GDesstpBt2yk4EzKtggtZM_pst09j3kLnjOq6KQtT30P0zmQhQtcpr-LowzW6aFQX4ObU5-jr-elz-Zqv3l_elotVblhZxdzWUFpRMF1SXNQUatCGKrCGNDztdEVLnggGrNaWW0Y0qzQWTClKwTa0mKO7Y-4YopPBuAimNeMwgImSVCXGnCfo_ght_bjbQ4hyM-79kO6SlDHBKs6xSBQ5UsaPIXho5Na7XvlJEiwPP5V_fpo8xcmjeu2dXcNv9P-uH0nZeKE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447486607</pqid></control><display><type>article</type><title>Advancing the physics basis for quasi-helically symmetric stellarators</title><source>Cambridge Journals Online</source><creator>Bader, A. ; Faber, B. J. ; Schmitt, J. C. ; Anderson, D. T. ; Drevlak, M. ; Duff, J. M. ; Frerichs, H. ; Hegna, C. C. ; Kruger, T. G. ; Landreman, M. ; McKinney, I. J. ; Singh, L. ; Schroeder, J. M. ; Terry, P. W. ; Ware, A. S.</creator><creatorcontrib>Bader, A. ; Faber, B. J. ; Schmitt, J. C. ; Anderson, D. T. ; Drevlak, M. ; Duff, J. M. ; Frerichs, H. ; Hegna, C. C. ; Kruger, T. G. ; Landreman, M. ; McKinney, I. J. ; Singh, L. ; Schroeder, J. M. ; Terry, P. W. ; Ware, A. S. ; Univ. of California, Oakland, CA (United States) ; Oak Ridge Associated Univ., Oak Ridge, TN (United States) ; Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><description>A new optimized quasi-helically symmetric configuration is described that has the desirable properties of improved energetic particle confinement, reduced turbulent transport by three-dimensional shaping and non-resonant divertor capabilities. The configuration presented in this paper is explicitly optimized for quasi-helical symmetry, energetic particle confinement, neoclassical confinement and stability near the axis. Post optimization, the configuration was evaluated for its performance with regard to energetic particle transport, ideal magnetohydrodynamic stability at various values of plasma pressure and ion temperature gradient instability induced turbulent transport. The effects of discrete coils on various confinement figures of merit, including energetic particle confinement, are determined by generating single-filament coils for the configuration. Preliminary divertor analysis shows that coils can be created that do not interfere with expansion of the vessel volume near the regions of outgoing heat flux, thus demonstrating the possibility of operating a non-resonant divertor.</description><identifier>ISSN: 0022-3778</identifier><identifier>EISSN: 1469-7807</identifier><identifier>DOI: 10.1017/S0022377820000963</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Coils ; Configurations ; Confinement ; Energetic particles ; Fluid flow ; Heat flux ; Ion temperature ; Magnetic fields ; Magnetohydrodynamic stability ; Magnetohydrodynamic turbulence ; Magnetohydrodynamics ; Optimization ; Optimization techniques ; Physics ; Plasma ; Plasma physics ; Plasma pressure ; Plasmas (physics) ; Stability analysis ; Stellarators ; Symmetry ; Temperature gradients</subject><ispartof>Journal of plasma physics, 2020-10, Vol.86 (5), Article 905860506</ispartof><rights>Copyright © The Author(s), 2020. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-d9e5d734b520392e9ebc2aedc1f6b52b8256e5d4e49bd6d41b48b074aa22edf23</citedby><cites>FETCH-LOGICAL-c458t-d9e5d734b520392e9ebc2aedc1f6b52b8256e5d4e49bd6d41b48b074aa22edf23</cites><orcidid>0000-0001-6213-7238 ; 0000-0001-7015-4177 ; 0000-0003-1462-3033 ; 0000-0002-6003-374X ; 0000-0003-4934-400X ; 0000-0002-9407-7636 ; 0000-0002-3527-5106 ; 0000-0002-7233-577X ; 000000026003374X ; 000000027233577X ; 0000000170154177 ; 0000000235275106 ; 0000000162137238 ; 0000000294077636 ; 0000000314623033 ; 000000034934400X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022377820000963/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,776,780,881,27901,27902,55603</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1850066$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bader, A.</creatorcontrib><creatorcontrib>Faber, B. J.</creatorcontrib><creatorcontrib>Schmitt, J. C.</creatorcontrib><creatorcontrib>Anderson, D. T.</creatorcontrib><creatorcontrib>Drevlak, M.</creatorcontrib><creatorcontrib>Duff, J. M.</creatorcontrib><creatorcontrib>Frerichs, H.</creatorcontrib><creatorcontrib>Hegna, C. C.</creatorcontrib><creatorcontrib>Kruger, T. G.</creatorcontrib><creatorcontrib>Landreman, M.</creatorcontrib><creatorcontrib>McKinney, I. J.</creatorcontrib><creatorcontrib>Singh, L.</creatorcontrib><creatorcontrib>Schroeder, J. M.</creatorcontrib><creatorcontrib>Terry, P. W.</creatorcontrib><creatorcontrib>Ware, A. S.</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><creatorcontrib>Oak Ridge Associated Univ., Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><title>Advancing the physics basis for quasi-helically symmetric stellarators</title><title>Journal of plasma physics</title><addtitle>J. Plasma Phys</addtitle><description>A new optimized quasi-helically symmetric configuration is described that has the desirable properties of improved energetic particle confinement, reduced turbulent transport by three-dimensional shaping and non-resonant divertor capabilities. The configuration presented in this paper is explicitly optimized for quasi-helical symmetry, energetic particle confinement, neoclassical confinement and stability near the axis. Post optimization, the configuration was evaluated for its performance with regard to energetic particle transport, ideal magnetohydrodynamic stability at various values of plasma pressure and ion temperature gradient instability induced turbulent transport. The effects of discrete coils on various confinement figures of merit, including energetic particle confinement, are determined by generating single-filament coils for the configuration. Preliminary divertor analysis shows that coils can be created that do not interfere with expansion of the vessel volume near the regions of outgoing heat flux, thus demonstrating the possibility of operating a non-resonant divertor.</description><subject>Coils</subject><subject>Configurations</subject><subject>Confinement</subject><subject>Energetic particles</subject><subject>Fluid flow</subject><subject>Heat flux</subject><subject>Ion temperature</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamic stability</subject><subject>Magnetohydrodynamic turbulence</subject><subject>Magnetohydrodynamics</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Physics</subject><subject>Plasma</subject><subject>Plasma physics</subject><subject>Plasma pressure</subject><subject>Plasmas (physics)</subject><subject>Stability analysis</subject><subject>Stellarators</subject><subject>Symmetry</subject><subject>Temperature gradients</subject><issn>0022-3778</issn><issn>1469-7807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNui59Ukm012j6X4BQUP6jnkY7absh9tkgr7701pwYM4lxnmfd6XYRC6JfiBYCIePzCmtBCiojhVzYszNCOM17mosDhHs4OcH_RLdBXCJjEFpmKGnhf2Ww3GDesstpBt2yk4EzKtggtZM_pst09j3kLnjOq6KQtT30P0zmQhQtcpr-LowzW6aFQX4ObU5-jr-elz-Zqv3l_elotVblhZxdzWUFpRMF1SXNQUatCGKrCGNDztdEVLnggGrNaWW0Y0qzQWTClKwTa0mKO7Y-4YopPBuAimNeMwgImSVCXGnCfo_ght_bjbQ4hyM-79kO6SlDHBKs6xSBQ5UsaPIXho5Na7XvlJEiwPP5V_fpo8xcmjeu2dXcNv9P-uH0nZeKE</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Bader, A.</creator><creator>Faber, B. J.</creator><creator>Schmitt, J. C.</creator><creator>Anderson, D. T.</creator><creator>Drevlak, M.</creator><creator>Duff, J. M.</creator><creator>Frerichs, H.</creator><creator>Hegna, C. C.</creator><creator>Kruger, T. G.</creator><creator>Landreman, M.</creator><creator>McKinney, I. J.</creator><creator>Singh, L.</creator><creator>Schroeder, J. M.</creator><creator>Terry, P. W.</creator><creator>Ware, A. S.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6213-7238</orcidid><orcidid>https://orcid.org/0000-0001-7015-4177</orcidid><orcidid>https://orcid.org/0000-0003-1462-3033</orcidid><orcidid>https://orcid.org/0000-0002-6003-374X</orcidid><orcidid>https://orcid.org/0000-0003-4934-400X</orcidid><orcidid>https://orcid.org/0000-0002-9407-7636</orcidid><orcidid>https://orcid.org/0000-0002-3527-5106</orcidid><orcidid>https://orcid.org/0000-0002-7233-577X</orcidid><orcidid>https://orcid.org/000000026003374X</orcidid><orcidid>https://orcid.org/000000027233577X</orcidid><orcidid>https://orcid.org/0000000170154177</orcidid><orcidid>https://orcid.org/0000000235275106</orcidid><orcidid>https://orcid.org/0000000162137238</orcidid><orcidid>https://orcid.org/0000000294077636</orcidid><orcidid>https://orcid.org/0000000314623033</orcidid><orcidid>https://orcid.org/000000034934400X</orcidid></search><sort><creationdate>20201001</creationdate><title>Advancing the physics basis for quasi-helically symmetric stellarators</title><author>Bader, A. ; Faber, B. J. ; Schmitt, J. C. ; Anderson, D. T. ; Drevlak, M. ; Duff, J. M. ; Frerichs, H. ; Hegna, C. C. ; Kruger, T. G. ; Landreman, M. ; McKinney, I. J. ; Singh, L. ; Schroeder, J. M. ; Terry, P. W. ; Ware, A. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-d9e5d734b520392e9ebc2aedc1f6b52b8256e5d4e49bd6d41b48b074aa22edf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Coils</topic><topic>Configurations</topic><topic>Confinement</topic><topic>Energetic particles</topic><topic>Fluid flow</topic><topic>Heat flux</topic><topic>Ion temperature</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamic stability</topic><topic>Magnetohydrodynamic turbulence</topic><topic>Magnetohydrodynamics</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Physics</topic><topic>Plasma</topic><topic>Plasma physics</topic><topic>Plasma pressure</topic><topic>Plasmas (physics)</topic><topic>Stability analysis</topic><topic>Stellarators</topic><topic>Symmetry</topic><topic>Temperature gradients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bader, A.</creatorcontrib><creatorcontrib>Faber, B. J.</creatorcontrib><creatorcontrib>Schmitt, J. C.</creatorcontrib><creatorcontrib>Anderson, D. T.</creatorcontrib><creatorcontrib>Drevlak, M.</creatorcontrib><creatorcontrib>Duff, J. M.</creatorcontrib><creatorcontrib>Frerichs, H.</creatorcontrib><creatorcontrib>Hegna, C. C.</creatorcontrib><creatorcontrib>Kruger, T. G.</creatorcontrib><creatorcontrib>Landreman, M.</creatorcontrib><creatorcontrib>McKinney, I. J.</creatorcontrib><creatorcontrib>Singh, L.</creatorcontrib><creatorcontrib>Schroeder, J. M.</creatorcontrib><creatorcontrib>Terry, P. W.</creatorcontrib><creatorcontrib>Ware, A. S.</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><creatorcontrib>Oak Ridge Associated Univ., Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><jtitle>Journal of plasma physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bader, A.</au><au>Faber, B. J.</au><au>Schmitt, J. C.</au><au>Anderson, D. T.</au><au>Drevlak, M.</au><au>Duff, J. M.</au><au>Frerichs, H.</au><au>Hegna, C. C.</au><au>Kruger, T. G.</au><au>Landreman, M.</au><au>McKinney, I. J.</au><au>Singh, L.</au><au>Schroeder, J. M.</au><au>Terry, P. W.</au><au>Ware, A. S.</au><aucorp>Univ. of California, Oakland, CA (United States)</aucorp><aucorp>Oak Ridge Associated Univ., Oak Ridge, TN (United States)</aucorp><aucorp>Univ. of Wisconsin, Madison, WI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advancing the physics basis for quasi-helically symmetric stellarators</atitle><jtitle>Journal of plasma physics</jtitle><addtitle>J. Plasma Phys</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>86</volume><issue>5</issue><artnum>905860506</artnum><issn>0022-3778</issn><eissn>1469-7807</eissn><abstract>A new optimized quasi-helically symmetric configuration is described that has the desirable properties of improved energetic particle confinement, reduced turbulent transport by three-dimensional shaping and non-resonant divertor capabilities. The configuration presented in this paper is explicitly optimized for quasi-helical symmetry, energetic particle confinement, neoclassical confinement and stability near the axis. Post optimization, the configuration was evaluated for its performance with regard to energetic particle transport, ideal magnetohydrodynamic stability at various values of plasma pressure and ion temperature gradient instability induced turbulent transport. The effects of discrete coils on various confinement figures of merit, including energetic particle confinement, are determined by generating single-filament coils for the configuration. Preliminary divertor analysis shows that coils can be created that do not interfere with expansion of the vessel volume near the regions of outgoing heat flux, thus demonstrating the possibility of operating a non-resonant divertor.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022377820000963</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-6213-7238</orcidid><orcidid>https://orcid.org/0000-0001-7015-4177</orcidid><orcidid>https://orcid.org/0000-0003-1462-3033</orcidid><orcidid>https://orcid.org/0000-0002-6003-374X</orcidid><orcidid>https://orcid.org/0000-0003-4934-400X</orcidid><orcidid>https://orcid.org/0000-0002-9407-7636</orcidid><orcidid>https://orcid.org/0000-0002-3527-5106</orcidid><orcidid>https://orcid.org/0000-0002-7233-577X</orcidid><orcidid>https://orcid.org/000000026003374X</orcidid><orcidid>https://orcid.org/000000027233577X</orcidid><orcidid>https://orcid.org/0000000170154177</orcidid><orcidid>https://orcid.org/0000000235275106</orcidid><orcidid>https://orcid.org/0000000162137238</orcidid><orcidid>https://orcid.org/0000000294077636</orcidid><orcidid>https://orcid.org/0000000314623033</orcidid><orcidid>https://orcid.org/000000034934400X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3778
ispartof Journal of plasma physics, 2020-10, Vol.86 (5), Article 905860506
issn 0022-3778
1469-7807
language eng
recordid cdi_osti_scitechconnect_1850066
source Cambridge Journals Online
subjects Coils
Configurations
Confinement
Energetic particles
Fluid flow
Heat flux
Ion temperature
Magnetic fields
Magnetohydrodynamic stability
Magnetohydrodynamic turbulence
Magnetohydrodynamics
Optimization
Optimization techniques
Physics
Plasma
Plasma physics
Plasma pressure
Plasmas (physics)
Stability analysis
Stellarators
Symmetry
Temperature gradients
title Advancing the physics basis for quasi-helically symmetric stellarators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A33%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advancing%20the%20physics%20basis%20for%20quasi-helically%20symmetric%20stellarators&rft.jtitle=Journal%20of%20plasma%20physics&rft.au=Bader,%20A.&rft.aucorp=Univ.%20of%20California,%20Oakland,%20CA%20(United%20States)&rft.date=2020-10-01&rft.volume=86&rft.issue=5&rft.artnum=905860506&rft.issn=0022-3778&rft.eissn=1469-7807&rft_id=info:doi/10.1017/S0022377820000963&rft_dat=%3Cproquest_osti_%3E2447486607%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447486607&rft_id=info:pmid/&rft_cupid=10_1017_S0022377820000963&rfr_iscdi=true