Advancing the physics basis for quasi-helically symmetric stellarators
A new optimized quasi-helically symmetric configuration is described that has the desirable properties of improved energetic particle confinement, reduced turbulent transport by three-dimensional shaping and non-resonant divertor capabilities. The configuration presented in this paper is explicitly...
Gespeichert in:
Veröffentlicht in: | Journal of plasma physics 2020-10, Vol.86 (5), Article 905860506 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Journal of plasma physics |
container_volume | 86 |
creator | Bader, A. Faber, B. J. Schmitt, J. C. Anderson, D. T. Drevlak, M. Duff, J. M. Frerichs, H. Hegna, C. C. Kruger, T. G. Landreman, M. McKinney, I. J. Singh, L. Schroeder, J. M. Terry, P. W. Ware, A. S. |
description | A new optimized quasi-helically symmetric configuration is described that has the desirable properties of improved energetic particle confinement, reduced turbulent transport by three-dimensional shaping and non-resonant divertor capabilities. The configuration presented in this paper is explicitly optimized for quasi-helical symmetry, energetic particle confinement, neoclassical confinement and stability near the axis. Post optimization, the configuration was evaluated for its performance with regard to energetic particle transport, ideal magnetohydrodynamic stability at various values of plasma pressure and ion temperature gradient instability induced turbulent transport. The effects of discrete coils on various confinement figures of merit, including energetic particle confinement, are determined by generating single-filament coils for the configuration. Preliminary divertor analysis shows that coils can be created that do not interfere with expansion of the vessel volume near the regions of outgoing heat flux, thus demonstrating the possibility of operating a non-resonant divertor. |
doi_str_mv | 10.1017/S0022377820000963 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1850066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022377820000963</cupid><sourcerecordid>2447486607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-d9e5d734b520392e9ebc2aedc1f6b52b8256e5d4e49bd6d41b48b074aa22edf23</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNui59Ukm012j6X4BQUP6jnkY7absh9tkgr7701pwYM4lxnmfd6XYRC6JfiBYCIePzCmtBCiojhVzYszNCOM17mosDhHs4OcH_RLdBXCJjEFpmKGnhf2Ww3GDesstpBt2yk4EzKtggtZM_pst09j3kLnjOq6KQtT30P0zmQhQtcpr-LowzW6aFQX4ObU5-jr-elz-Zqv3l_elotVblhZxdzWUFpRMF1SXNQUatCGKrCGNDztdEVLnggGrNaWW0Y0qzQWTClKwTa0mKO7Y-4YopPBuAimNeMwgImSVCXGnCfo_ght_bjbQ4hyM-79kO6SlDHBKs6xSBQ5UsaPIXho5Na7XvlJEiwPP5V_fpo8xcmjeu2dXcNv9P-uH0nZeKE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447486607</pqid></control><display><type>article</type><title>Advancing the physics basis for quasi-helically symmetric stellarators</title><source>Cambridge Journals Online</source><creator>Bader, A. ; Faber, B. J. ; Schmitt, J. C. ; Anderson, D. T. ; Drevlak, M. ; Duff, J. M. ; Frerichs, H. ; Hegna, C. C. ; Kruger, T. G. ; Landreman, M. ; McKinney, I. J. ; Singh, L. ; Schroeder, J. M. ; Terry, P. W. ; Ware, A. S.</creator><creatorcontrib>Bader, A. ; Faber, B. J. ; Schmitt, J. C. ; Anderson, D. T. ; Drevlak, M. ; Duff, J. M. ; Frerichs, H. ; Hegna, C. C. ; Kruger, T. G. ; Landreman, M. ; McKinney, I. J. ; Singh, L. ; Schroeder, J. M. ; Terry, P. W. ; Ware, A. S. ; Univ. of California, Oakland, CA (United States) ; Oak Ridge Associated Univ., Oak Ridge, TN (United States) ; Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><description>A new optimized quasi-helically symmetric configuration is described that has the desirable properties of improved energetic particle confinement, reduced turbulent transport by three-dimensional shaping and non-resonant divertor capabilities. The configuration presented in this paper is explicitly optimized for quasi-helical symmetry, energetic particle confinement, neoclassical confinement and stability near the axis. Post optimization, the configuration was evaluated for its performance with regard to energetic particle transport, ideal magnetohydrodynamic stability at various values of plasma pressure and ion temperature gradient instability induced turbulent transport. The effects of discrete coils on various confinement figures of merit, including energetic particle confinement, are determined by generating single-filament coils for the configuration. Preliminary divertor analysis shows that coils can be created that do not interfere with expansion of the vessel volume near the regions of outgoing heat flux, thus demonstrating the possibility of operating a non-resonant divertor.</description><identifier>ISSN: 0022-3778</identifier><identifier>EISSN: 1469-7807</identifier><identifier>DOI: 10.1017/S0022377820000963</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Coils ; Configurations ; Confinement ; Energetic particles ; Fluid flow ; Heat flux ; Ion temperature ; Magnetic fields ; Magnetohydrodynamic stability ; Magnetohydrodynamic turbulence ; Magnetohydrodynamics ; Optimization ; Optimization techniques ; Physics ; Plasma ; Plasma physics ; Plasma pressure ; Plasmas (physics) ; Stability analysis ; Stellarators ; Symmetry ; Temperature gradients</subject><ispartof>Journal of plasma physics, 2020-10, Vol.86 (5), Article 905860506</ispartof><rights>Copyright © The Author(s), 2020. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-d9e5d734b520392e9ebc2aedc1f6b52b8256e5d4e49bd6d41b48b074aa22edf23</citedby><cites>FETCH-LOGICAL-c458t-d9e5d734b520392e9ebc2aedc1f6b52b8256e5d4e49bd6d41b48b074aa22edf23</cites><orcidid>0000-0001-6213-7238 ; 0000-0001-7015-4177 ; 0000-0003-1462-3033 ; 0000-0002-6003-374X ; 0000-0003-4934-400X ; 0000-0002-9407-7636 ; 0000-0002-3527-5106 ; 0000-0002-7233-577X ; 000000026003374X ; 000000027233577X ; 0000000170154177 ; 0000000235275106 ; 0000000162137238 ; 0000000294077636 ; 0000000314623033 ; 000000034934400X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022377820000963/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,776,780,881,27901,27902,55603</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1850066$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bader, A.</creatorcontrib><creatorcontrib>Faber, B. J.</creatorcontrib><creatorcontrib>Schmitt, J. C.</creatorcontrib><creatorcontrib>Anderson, D. T.</creatorcontrib><creatorcontrib>Drevlak, M.</creatorcontrib><creatorcontrib>Duff, J. M.</creatorcontrib><creatorcontrib>Frerichs, H.</creatorcontrib><creatorcontrib>Hegna, C. C.</creatorcontrib><creatorcontrib>Kruger, T. G.</creatorcontrib><creatorcontrib>Landreman, M.</creatorcontrib><creatorcontrib>McKinney, I. J.</creatorcontrib><creatorcontrib>Singh, L.</creatorcontrib><creatorcontrib>Schroeder, J. M.</creatorcontrib><creatorcontrib>Terry, P. W.</creatorcontrib><creatorcontrib>Ware, A. S.</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><creatorcontrib>Oak Ridge Associated Univ., Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><title>Advancing the physics basis for quasi-helically symmetric stellarators</title><title>Journal of plasma physics</title><addtitle>J. Plasma Phys</addtitle><description>A new optimized quasi-helically symmetric configuration is described that has the desirable properties of improved energetic particle confinement, reduced turbulent transport by three-dimensional shaping and non-resonant divertor capabilities. The configuration presented in this paper is explicitly optimized for quasi-helical symmetry, energetic particle confinement, neoclassical confinement and stability near the axis. Post optimization, the configuration was evaluated for its performance with regard to energetic particle transport, ideal magnetohydrodynamic stability at various values of plasma pressure and ion temperature gradient instability induced turbulent transport. The effects of discrete coils on various confinement figures of merit, including energetic particle confinement, are determined by generating single-filament coils for the configuration. Preliminary divertor analysis shows that coils can be created that do not interfere with expansion of the vessel volume near the regions of outgoing heat flux, thus demonstrating the possibility of operating a non-resonant divertor.</description><subject>Coils</subject><subject>Configurations</subject><subject>Confinement</subject><subject>Energetic particles</subject><subject>Fluid flow</subject><subject>Heat flux</subject><subject>Ion temperature</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamic stability</subject><subject>Magnetohydrodynamic turbulence</subject><subject>Magnetohydrodynamics</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Physics</subject><subject>Plasma</subject><subject>Plasma physics</subject><subject>Plasma pressure</subject><subject>Plasmas (physics)</subject><subject>Stability analysis</subject><subject>Stellarators</subject><subject>Symmetry</subject><subject>Temperature gradients</subject><issn>0022-3778</issn><issn>1469-7807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNui59Ukm012j6X4BQUP6jnkY7absh9tkgr7701pwYM4lxnmfd6XYRC6JfiBYCIePzCmtBCiojhVzYszNCOM17mosDhHs4OcH_RLdBXCJjEFpmKGnhf2Ww3GDesstpBt2yk4EzKtggtZM_pst09j3kLnjOq6KQtT30P0zmQhQtcpr-LowzW6aFQX4ObU5-jr-elz-Zqv3l_elotVblhZxdzWUFpRMF1SXNQUatCGKrCGNDztdEVLnggGrNaWW0Y0qzQWTClKwTa0mKO7Y-4YopPBuAimNeMwgImSVCXGnCfo_ght_bjbQ4hyM-79kO6SlDHBKs6xSBQ5UsaPIXho5Na7XvlJEiwPP5V_fpo8xcmjeu2dXcNv9P-uH0nZeKE</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Bader, A.</creator><creator>Faber, B. J.</creator><creator>Schmitt, J. C.</creator><creator>Anderson, D. T.</creator><creator>Drevlak, M.</creator><creator>Duff, J. M.</creator><creator>Frerichs, H.</creator><creator>Hegna, C. C.</creator><creator>Kruger, T. G.</creator><creator>Landreman, M.</creator><creator>McKinney, I. J.</creator><creator>Singh, L.</creator><creator>Schroeder, J. M.</creator><creator>Terry, P. W.</creator><creator>Ware, A. S.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6213-7238</orcidid><orcidid>https://orcid.org/0000-0001-7015-4177</orcidid><orcidid>https://orcid.org/0000-0003-1462-3033</orcidid><orcidid>https://orcid.org/0000-0002-6003-374X</orcidid><orcidid>https://orcid.org/0000-0003-4934-400X</orcidid><orcidid>https://orcid.org/0000-0002-9407-7636</orcidid><orcidid>https://orcid.org/0000-0002-3527-5106</orcidid><orcidid>https://orcid.org/0000-0002-7233-577X</orcidid><orcidid>https://orcid.org/000000026003374X</orcidid><orcidid>https://orcid.org/000000027233577X</orcidid><orcidid>https://orcid.org/0000000170154177</orcidid><orcidid>https://orcid.org/0000000235275106</orcidid><orcidid>https://orcid.org/0000000162137238</orcidid><orcidid>https://orcid.org/0000000294077636</orcidid><orcidid>https://orcid.org/0000000314623033</orcidid><orcidid>https://orcid.org/000000034934400X</orcidid></search><sort><creationdate>20201001</creationdate><title>Advancing the physics basis for quasi-helically symmetric stellarators</title><author>Bader, A. ; Faber, B. J. ; Schmitt, J. C. ; Anderson, D. T. ; Drevlak, M. ; Duff, J. M. ; Frerichs, H. ; Hegna, C. C. ; Kruger, T. G. ; Landreman, M. ; McKinney, I. J. ; Singh, L. ; Schroeder, J. M. ; Terry, P. W. ; Ware, A. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-d9e5d734b520392e9ebc2aedc1f6b52b8256e5d4e49bd6d41b48b074aa22edf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Coils</topic><topic>Configurations</topic><topic>Confinement</topic><topic>Energetic particles</topic><topic>Fluid flow</topic><topic>Heat flux</topic><topic>Ion temperature</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamic stability</topic><topic>Magnetohydrodynamic turbulence</topic><topic>Magnetohydrodynamics</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Physics</topic><topic>Plasma</topic><topic>Plasma physics</topic><topic>Plasma pressure</topic><topic>Plasmas (physics)</topic><topic>Stability analysis</topic><topic>Stellarators</topic><topic>Symmetry</topic><topic>Temperature gradients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bader, A.</creatorcontrib><creatorcontrib>Faber, B. J.</creatorcontrib><creatorcontrib>Schmitt, J. C.</creatorcontrib><creatorcontrib>Anderson, D. T.</creatorcontrib><creatorcontrib>Drevlak, M.</creatorcontrib><creatorcontrib>Duff, J. M.</creatorcontrib><creatorcontrib>Frerichs, H.</creatorcontrib><creatorcontrib>Hegna, C. C.</creatorcontrib><creatorcontrib>Kruger, T. G.</creatorcontrib><creatorcontrib>Landreman, M.</creatorcontrib><creatorcontrib>McKinney, I. J.</creatorcontrib><creatorcontrib>Singh, L.</creatorcontrib><creatorcontrib>Schroeder, J. M.</creatorcontrib><creatorcontrib>Terry, P. W.</creatorcontrib><creatorcontrib>Ware, A. S.</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><creatorcontrib>Oak Ridge Associated Univ., Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><jtitle>Journal of plasma physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bader, A.</au><au>Faber, B. J.</au><au>Schmitt, J. C.</au><au>Anderson, D. T.</au><au>Drevlak, M.</au><au>Duff, J. M.</au><au>Frerichs, H.</au><au>Hegna, C. C.</au><au>Kruger, T. G.</au><au>Landreman, M.</au><au>McKinney, I. J.</au><au>Singh, L.</au><au>Schroeder, J. M.</au><au>Terry, P. W.</au><au>Ware, A. S.</au><aucorp>Univ. of California, Oakland, CA (United States)</aucorp><aucorp>Oak Ridge Associated Univ., Oak Ridge, TN (United States)</aucorp><aucorp>Univ. of Wisconsin, Madison, WI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advancing the physics basis for quasi-helically symmetric stellarators</atitle><jtitle>Journal of plasma physics</jtitle><addtitle>J. Plasma Phys</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>86</volume><issue>5</issue><artnum>905860506</artnum><issn>0022-3778</issn><eissn>1469-7807</eissn><abstract>A new optimized quasi-helically symmetric configuration is described that has the desirable properties of improved energetic particle confinement, reduced turbulent transport by three-dimensional shaping and non-resonant divertor capabilities. The configuration presented in this paper is explicitly optimized for quasi-helical symmetry, energetic particle confinement, neoclassical confinement and stability near the axis. Post optimization, the configuration was evaluated for its performance with regard to energetic particle transport, ideal magnetohydrodynamic stability at various values of plasma pressure and ion temperature gradient instability induced turbulent transport. The effects of discrete coils on various confinement figures of merit, including energetic particle confinement, are determined by generating single-filament coils for the configuration. Preliminary divertor analysis shows that coils can be created that do not interfere with expansion of the vessel volume near the regions of outgoing heat flux, thus demonstrating the possibility of operating a non-resonant divertor.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022377820000963</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-6213-7238</orcidid><orcidid>https://orcid.org/0000-0001-7015-4177</orcidid><orcidid>https://orcid.org/0000-0003-1462-3033</orcidid><orcidid>https://orcid.org/0000-0002-6003-374X</orcidid><orcidid>https://orcid.org/0000-0003-4934-400X</orcidid><orcidid>https://orcid.org/0000-0002-9407-7636</orcidid><orcidid>https://orcid.org/0000-0002-3527-5106</orcidid><orcidid>https://orcid.org/0000-0002-7233-577X</orcidid><orcidid>https://orcid.org/000000026003374X</orcidid><orcidid>https://orcid.org/000000027233577X</orcidid><orcidid>https://orcid.org/0000000170154177</orcidid><orcidid>https://orcid.org/0000000235275106</orcidid><orcidid>https://orcid.org/0000000162137238</orcidid><orcidid>https://orcid.org/0000000294077636</orcidid><orcidid>https://orcid.org/0000000314623033</orcidid><orcidid>https://orcid.org/000000034934400X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3778 |
ispartof | Journal of plasma physics, 2020-10, Vol.86 (5), Article 905860506 |
issn | 0022-3778 1469-7807 |
language | eng |
recordid | cdi_osti_scitechconnect_1850066 |
source | Cambridge Journals Online |
subjects | Coils Configurations Confinement Energetic particles Fluid flow Heat flux Ion temperature Magnetic fields Magnetohydrodynamic stability Magnetohydrodynamic turbulence Magnetohydrodynamics Optimization Optimization techniques Physics Plasma Plasma physics Plasma pressure Plasmas (physics) Stability analysis Stellarators Symmetry Temperature gradients |
title | Advancing the physics basis for quasi-helically symmetric stellarators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A33%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advancing%20the%20physics%20basis%20for%20quasi-helically%20symmetric%20stellarators&rft.jtitle=Journal%20of%20plasma%20physics&rft.au=Bader,%20A.&rft.aucorp=Univ.%20of%20California,%20Oakland,%20CA%20(United%20States)&rft.date=2020-10-01&rft.volume=86&rft.issue=5&rft.artnum=905860506&rft.issn=0022-3778&rft.eissn=1469-7807&rft_id=info:doi/10.1017/S0022377820000963&rft_dat=%3Cproquest_osti_%3E2447486607%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447486607&rft_id=info:pmid/&rft_cupid=10_1017_S0022377820000963&rfr_iscdi=true |