Adaptive Hybridizable Discontinuous Galerkin discretization of the Grad–Shafranov equation by extension from polygonal subdomains

In this work, we propose a high-order adaptive numerical solver for the semilinear elliptic boundary value problem modeling magnetic plasma equilibrium in axisymmetric confinement devices. In the fixed boundary case, the equation is posed on curved domains with piecewise smooth curved boundaries tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer physics communications 2020-03, Vol.255 (C)
Hauptverfasser: Sánchez-Vizuet, Tonatiuh, Solano, Manuel E., Cerfon, Antoine J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page
container_title Computer physics communications
container_volume 255
creator Sánchez-Vizuet, Tonatiuh
Solano, Manuel E.
Cerfon, Antoine J.
description In this work, we propose a high-order adaptive numerical solver for the semilinear elliptic boundary value problem modeling magnetic plasma equilibrium in axisymmetric confinement devices. In the fixed boundary case, the equation is posed on curved domains with piecewise smooth curved boundaries that may present corners. The solution method we present is based on the hybridizable discontinuous Galerkin method and sidesteps the need for geometry-conforming triangulations thanks to a transfer technique that allows to approximate the solution using only a polygonal subset as computational domain. Moreover, the solver features automatic mesh refinement driven by a residual-based a posteriori error estimator. As the mesh is locally refined, the computational domain is automatically updated in order to always maintain the distance between the actual boundary and the computational boundary of the order of the local mesh diameter. Numerical evidence is presented of the suitability of the estimator as an approximate error measure for physically relevant equilibria with pressure pedestals, internal transport barriers, and current holes on realistic geometries.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1849943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1849943</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18499433</originalsourceid><addsrcrecordid>eNqNzk1OwzAQBWALUYlAucOIfSSHpKReIn7aPd1XTjwhA66neJyKsELiCNyQkxAEB2D19J6-xTtSWbGsTX5pqupYZVoXOq-uFosTdSrypLWua1Nm6uPa2X2iA8J6bCI5erONR7glaTkkCgMPAivrMT5TADfNEdOEEnEA7iD1CKto3df750Nvu2gDHwBfhl_QjICvCYP8lC7yDvbsx0cO1oMMjeOdpSBzNeusFzz_yzN1cX-3uVnnLIm20lLCtp_uBGzTtlhWxlRl-S_0DXqnVfc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Adaptive Hybridizable Discontinuous Galerkin discretization of the Grad–Shafranov equation by extension from polygonal subdomains</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Sánchez-Vizuet, Tonatiuh ; Solano, Manuel E. ; Cerfon, Antoine J.</creator><creatorcontrib>Sánchez-Vizuet, Tonatiuh ; Solano, Manuel E. ; Cerfon, Antoine J. ; City Univ. of New York (CUNY), NY (United States)</creatorcontrib><description>In this work, we propose a high-order adaptive numerical solver for the semilinear elliptic boundary value problem modeling magnetic plasma equilibrium in axisymmetric confinement devices. In the fixed boundary case, the equation is posed on curved domains with piecewise smooth curved boundaries that may present corners. The solution method we present is based on the hybridizable discontinuous Galerkin method and sidesteps the need for geometry-conforming triangulations thanks to a transfer technique that allows to approximate the solution using only a polygonal subset as computational domain. Moreover, the solver features automatic mesh refinement driven by a residual-based a posteriori error estimator. As the mesh is locally refined, the computational domain is automatically updated in order to always maintain the distance between the actual boundary and the computational boundary of the order of the local mesh diameter. Numerical evidence is presented of the suitability of the estimator as an approximate error measure for physically relevant equilibria with pressure pedestals, internal transport barriers, and current holes on realistic geometries.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>Adaptive Hybridizable Discontinuous Galerkin (HDG) ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Computer Science ; Curved boundaries ; Local mesh refinement ; MATHEMATICS AND COMPUTING ; Physics ; Plasma Equilibrium ; Residual error estimator ; Un-fitted mesh</subject><ispartof>Computer physics communications, 2020-03, Vol.255 (C)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000289302798</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1849943$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sánchez-Vizuet, Tonatiuh</creatorcontrib><creatorcontrib>Solano, Manuel E.</creatorcontrib><creatorcontrib>Cerfon, Antoine J.</creatorcontrib><creatorcontrib>City Univ. of New York (CUNY), NY (United States)</creatorcontrib><title>Adaptive Hybridizable Discontinuous Galerkin discretization of the Grad–Shafranov equation by extension from polygonal subdomains</title><title>Computer physics communications</title><description>In this work, we propose a high-order adaptive numerical solver for the semilinear elliptic boundary value problem modeling magnetic plasma equilibrium in axisymmetric confinement devices. In the fixed boundary case, the equation is posed on curved domains with piecewise smooth curved boundaries that may present corners. The solution method we present is based on the hybridizable discontinuous Galerkin method and sidesteps the need for geometry-conforming triangulations thanks to a transfer technique that allows to approximate the solution using only a polygonal subset as computational domain. Moreover, the solver features automatic mesh refinement driven by a residual-based a posteriori error estimator. As the mesh is locally refined, the computational domain is automatically updated in order to always maintain the distance between the actual boundary and the computational boundary of the order of the local mesh diameter. Numerical evidence is presented of the suitability of the estimator as an approximate error measure for physically relevant equilibria with pressure pedestals, internal transport barriers, and current holes on realistic geometries.</description><subject>Adaptive Hybridizable Discontinuous Galerkin (HDG)</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Computer Science</subject><subject>Curved boundaries</subject><subject>Local mesh refinement</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Physics</subject><subject>Plasma Equilibrium</subject><subject>Residual error estimator</subject><subject>Un-fitted mesh</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNzk1OwzAQBWALUYlAucOIfSSHpKReIn7aPd1XTjwhA66neJyKsELiCNyQkxAEB2D19J6-xTtSWbGsTX5pqupYZVoXOq-uFosTdSrypLWua1Nm6uPa2X2iA8J6bCI5erONR7glaTkkCgMPAivrMT5TADfNEdOEEnEA7iD1CKto3df750Nvu2gDHwBfhl_QjICvCYP8lC7yDvbsx0cO1oMMjeOdpSBzNeusFzz_yzN1cX-3uVnnLIm20lLCtp_uBGzTtlhWxlRl-S_0DXqnVfc</recordid><startdate>20200303</startdate><enddate>20200303</enddate><creator>Sánchez-Vizuet, Tonatiuh</creator><creator>Solano, Manuel E.</creator><creator>Cerfon, Antoine J.</creator><general>Elsevier</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000289302798</orcidid></search><sort><creationdate>20200303</creationdate><title>Adaptive Hybridizable Discontinuous Galerkin discretization of the Grad–Shafranov equation by extension from polygonal subdomains</title><author>Sánchez-Vizuet, Tonatiuh ; Solano, Manuel E. ; Cerfon, Antoine J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18499433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive Hybridizable Discontinuous Galerkin (HDG)</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Computer Science</topic><topic>Curved boundaries</topic><topic>Local mesh refinement</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Physics</topic><topic>Plasma Equilibrium</topic><topic>Residual error estimator</topic><topic>Un-fitted mesh</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sánchez-Vizuet, Tonatiuh</creatorcontrib><creatorcontrib>Solano, Manuel E.</creatorcontrib><creatorcontrib>Cerfon, Antoine J.</creatorcontrib><creatorcontrib>City Univ. of New York (CUNY), NY (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sánchez-Vizuet, Tonatiuh</au><au>Solano, Manuel E.</au><au>Cerfon, Antoine J.</au><aucorp>City Univ. of New York (CUNY), NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Hybridizable Discontinuous Galerkin discretization of the Grad–Shafranov equation by extension from polygonal subdomains</atitle><jtitle>Computer physics communications</jtitle><date>2020-03-03</date><risdate>2020</risdate><volume>255</volume><issue>C</issue><issn>0010-4655</issn><eissn>1879-2944</eissn><abstract>In this work, we propose a high-order adaptive numerical solver for the semilinear elliptic boundary value problem modeling magnetic plasma equilibrium in axisymmetric confinement devices. In the fixed boundary case, the equation is posed on curved domains with piecewise smooth curved boundaries that may present corners. The solution method we present is based on the hybridizable discontinuous Galerkin method and sidesteps the need for geometry-conforming triangulations thanks to a transfer technique that allows to approximate the solution using only a polygonal subset as computational domain. Moreover, the solver features automatic mesh refinement driven by a residual-based a posteriori error estimator. As the mesh is locally refined, the computational domain is automatically updated in order to always maintain the distance between the actual boundary and the computational boundary of the order of the local mesh diameter. Numerical evidence is presented of the suitability of the estimator as an approximate error measure for physically relevant equilibria with pressure pedestals, internal transport barriers, and current holes on realistic geometries.</abstract><cop>United States</cop><pub>Elsevier</pub><orcidid>https://orcid.org/0000000289302798</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-4655
ispartof Computer physics communications, 2020-03, Vol.255 (C)
issn 0010-4655
1879-2944
language eng
recordid cdi_osti_scitechconnect_1849943
source ScienceDirect Journals (5 years ago - present)
subjects Adaptive Hybridizable Discontinuous Galerkin (HDG)
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Computer Science
Curved boundaries
Local mesh refinement
MATHEMATICS AND COMPUTING
Physics
Plasma Equilibrium
Residual error estimator
Un-fitted mesh
title Adaptive Hybridizable Discontinuous Galerkin discretization of the Grad–Shafranov equation by extension from polygonal subdomains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T17%3A39%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Hybridizable%20Discontinuous%20Galerkin%20discretization%20of%20the%20Grad%E2%80%93Shafranov%20equation%20by%20extension%20from%20polygonal%20subdomains&rft.jtitle=Computer%20physics%20communications&rft.au=S%C3%A1nchez-Vizuet,%20Tonatiuh&rft.aucorp=City%20Univ.%20of%20New%20York%20(CUNY),%20NY%20(United%20States)&rft.date=2020-03-03&rft.volume=255&rft.issue=C&rft.issn=0010-4655&rft.eissn=1879-2944&rft_id=info:doi/&rft_dat=%3Costi%3E1849943%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true