Revealing the effect of interfacial electron transfer in heterostructured Co9S8@NiFe LDH for enhanced electrocatalytic oxygen evolution
Heterointerface engineering is a desirable way to rationally design efficient and low-cost electrocatalysts for the oxygen evolution reaction (OER). Herein, urchin-like Co9S8@NiFe layered double hydroxide (Co9S8@NiFe LDH) heterostructured hollow spheres are assembled from Co9S8 hollow spheres as the...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-05, Vol.9 (20), p.12244-12254 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12254 |
---|---|
container_issue | 20 |
container_start_page | 12244 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 9 |
creator | Feng, Xueting Jiao, Qingze Dai, Zheng Dang, Yanliu Suib, Steven L Zhang, Jiatao Zhao, Yun Li, Hansheng Feng, Caihong Li, Anran |
description | Heterointerface engineering is a desirable way to rationally design efficient and low-cost electrocatalysts for the oxygen evolution reaction (OER). Herein, urchin-like Co9S8@NiFe layered double hydroxide (Co9S8@NiFe LDH) heterostructured hollow spheres are assembled from Co9S8 hollow spheres as the core and porous NiFe LDH nanowires as the shell. The heterostructured hollow spheres show a small overpotential of 220 mV at a current density of 10 mA cm−2, a low Tafel slope of 52.0 mV dec−1, and robust stability, which is better than that of commercial IrO2 and most reported non-precious electrocatalysts. Density functional theory (DFT) calculations show that the synergetic effect at the interface could improve the electrical conductivity of Co9S8@NiFe LDH, induce electron transfer from NiFe LDH to Co9S8, and lower the energy barriers of intermediates for the OER, leading to enhanced electrocatalytic activity. Meanwhile, the urchin-like hollow structure with nanopores and super-hydrophilicity can provide desired structural stability, facilitate ion penetration and release bubbles, improving the accessibility of active sites and thereby boosting OER catalytic performance. This work provides a viable route to develop high performance electrocatalysts for the OER. |
doi_str_mv | 10.1039/d1ta02318g |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1849924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2531568073</sourcerecordid><originalsourceid>FETCH-LOGICAL-g283t-bbe70e6ced6444a9bf02c045e4258aead171538a3bb6be1e3ffe6953b75f512a3</originalsourceid><addsrcrecordid>eNo9j91KAzEQhYMoWGpvfIKg16v53U3ulGqtUBT8uV6y6WS7ZUk0my32CXxtAy3OzQznHA7fIHRJyQ0lXN-uaTKEcaraEzRhRJKiEro8_b-VOkezYdiSPIqQUusJ-n2DHZi-8y1OG8DgHNiEg8OdTxCdsZ3pMfRZjMHjFI0fHMTs4g3kQBhSHG0aI6zxPOh3dffSLQCvHpbYhYjBb4y32Ts2WJNMv0-dxeFn34LHsAv9mLrgL9CZM_0As-Oeos_F48d8Waxen57n96uiZYqnommgIlDmylIIYXTjCLNESBBMKgNmTSsquTK8acoGKPD8T6klbyrpJGWGT9HVoTeTd_VguwR2Y4P3ma-mSmjNRA5dH0JfMXyPMKR6G8boM1fNJKeyVKTi_A-HBnJy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2531568073</pqid></control><display><type>article</type><title>Revealing the effect of interfacial electron transfer in heterostructured Co9S8@NiFe LDH for enhanced electrocatalytic oxygen evolution</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Feng, Xueting ; Jiao, Qingze ; Dai, Zheng ; Dang, Yanliu ; Suib, Steven L ; Zhang, Jiatao ; Zhao, Yun ; Li, Hansheng ; Feng, Caihong ; Li, Anran</creator><creatorcontrib>Feng, Xueting ; Jiao, Qingze ; Dai, Zheng ; Dang, Yanliu ; Suib, Steven L ; Zhang, Jiatao ; Zhao, Yun ; Li, Hansheng ; Feng, Caihong ; Li, Anran ; Univ. of Connecticut, Storrs, CT (United States)</creatorcontrib><description>Heterointerface engineering is a desirable way to rationally design efficient and low-cost electrocatalysts for the oxygen evolution reaction (OER). Herein, urchin-like Co9S8@NiFe layered double hydroxide (Co9S8@NiFe LDH) heterostructured hollow spheres are assembled from Co9S8 hollow spheres as the core and porous NiFe LDH nanowires as the shell. The heterostructured hollow spheres show a small overpotential of 220 mV at a current density of 10 mA cm−2, a low Tafel slope of 52.0 mV dec−1, and robust stability, which is better than that of commercial IrO2 and most reported non-precious electrocatalysts. Density functional theory (DFT) calculations show that the synergetic effect at the interface could improve the electrical conductivity of Co9S8@NiFe LDH, induce electron transfer from NiFe LDH to Co9S8, and lower the energy barriers of intermediates for the OER, leading to enhanced electrocatalytic activity. Meanwhile, the urchin-like hollow structure with nanopores and super-hydrophilicity can provide desired structural stability, facilitate ion penetration and release bubbles, improving the accessibility of active sites and thereby boosting OER catalytic performance. This work provides a viable route to develop high performance electrocatalysts for the OER.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d1ta02318g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Cobalt sulfide ; Density functional theory ; Electrical conductivity ; Electrical resistivity ; Electrocatalysts ; Electron transfer ; Hydroxides ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Intermediates ; Intermetallic compounds ; Iron compounds ; MATERIALS SCIENCE ; Nanotechnology ; Nanowires ; Nickel compounds ; Oxygen ; Oxygen evolution reactions ; Structural stability</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2021-05, Vol.9 (20), p.12244-12254</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000228250904 ; 0000000174144902 ; 0000000313998407 ; 0000000244329305 ; 000000033073311X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1849924$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, Xueting</creatorcontrib><creatorcontrib>Jiao, Qingze</creatorcontrib><creatorcontrib>Dai, Zheng</creatorcontrib><creatorcontrib>Dang, Yanliu</creatorcontrib><creatorcontrib>Suib, Steven L</creatorcontrib><creatorcontrib>Zhang, Jiatao</creatorcontrib><creatorcontrib>Zhao, Yun</creatorcontrib><creatorcontrib>Li, Hansheng</creatorcontrib><creatorcontrib>Feng, Caihong</creatorcontrib><creatorcontrib>Li, Anran</creatorcontrib><creatorcontrib>Univ. of Connecticut, Storrs, CT (United States)</creatorcontrib><title>Revealing the effect of interfacial electron transfer in heterostructured Co9S8@NiFe LDH for enhanced electrocatalytic oxygen evolution</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Heterointerface engineering is a desirable way to rationally design efficient and low-cost electrocatalysts for the oxygen evolution reaction (OER). Herein, urchin-like Co9S8@NiFe layered double hydroxide (Co9S8@NiFe LDH) heterostructured hollow spheres are assembled from Co9S8 hollow spheres as the core and porous NiFe LDH nanowires as the shell. The heterostructured hollow spheres show a small overpotential of 220 mV at a current density of 10 mA cm−2, a low Tafel slope of 52.0 mV dec−1, and robust stability, which is better than that of commercial IrO2 and most reported non-precious electrocatalysts. Density functional theory (DFT) calculations show that the synergetic effect at the interface could improve the electrical conductivity of Co9S8@NiFe LDH, induce electron transfer from NiFe LDH to Co9S8, and lower the energy barriers of intermediates for the OER, leading to enhanced electrocatalytic activity. Meanwhile, the urchin-like hollow structure with nanopores and super-hydrophilicity can provide desired structural stability, facilitate ion penetration and release bubbles, improving the accessibility of active sites and thereby boosting OER catalytic performance. This work provides a viable route to develop high performance electrocatalysts for the OER.</description><subject>Cobalt sulfide</subject><subject>Density functional theory</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Electrocatalysts</subject><subject>Electron transfer</subject><subject>Hydroxides</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Intermediates</subject><subject>Intermetallic compounds</subject><subject>Iron compounds</subject><subject>MATERIALS SCIENCE</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Nickel compounds</subject><subject>Oxygen</subject><subject>Oxygen evolution reactions</subject><subject>Structural stability</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9j91KAzEQhYMoWGpvfIKg16v53U3ulGqtUBT8uV6y6WS7ZUk0my32CXxtAy3OzQznHA7fIHRJyQ0lXN-uaTKEcaraEzRhRJKiEro8_b-VOkezYdiSPIqQUusJ-n2DHZi-8y1OG8DgHNiEg8OdTxCdsZ3pMfRZjMHjFI0fHMTs4g3kQBhSHG0aI6zxPOh3dffSLQCvHpbYhYjBb4y32Ts2WJNMv0-dxeFn34LHsAv9mLrgL9CZM_0As-Oeos_F48d8Waxen57n96uiZYqnommgIlDmylIIYXTjCLNESBBMKgNmTSsquTK8acoGKPD8T6klbyrpJGWGT9HVoTeTd_VguwR2Y4P3ma-mSmjNRA5dH0JfMXyPMKR6G8boM1fNJKeyVKTi_A-HBnJy</recordid><startdate>20210528</startdate><enddate>20210528</enddate><creator>Feng, Xueting</creator><creator>Jiao, Qingze</creator><creator>Dai, Zheng</creator><creator>Dang, Yanliu</creator><creator>Suib, Steven L</creator><creator>Zhang, Jiatao</creator><creator>Zhao, Yun</creator><creator>Li, Hansheng</creator><creator>Feng, Caihong</creator><creator>Li, Anran</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000228250904</orcidid><orcidid>https://orcid.org/0000000174144902</orcidid><orcidid>https://orcid.org/0000000313998407</orcidid><orcidid>https://orcid.org/0000000244329305</orcidid><orcidid>https://orcid.org/000000033073311X</orcidid></search><sort><creationdate>20210528</creationdate><title>Revealing the effect of interfacial electron transfer in heterostructured Co9S8@NiFe LDH for enhanced electrocatalytic oxygen evolution</title><author>Feng, Xueting ; Jiao, Qingze ; Dai, Zheng ; Dang, Yanliu ; Suib, Steven L ; Zhang, Jiatao ; Zhao, Yun ; Li, Hansheng ; Feng, Caihong ; Li, Anran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g283t-bbe70e6ced6444a9bf02c045e4258aead171538a3bb6be1e3ffe6953b75f512a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cobalt sulfide</topic><topic>Density functional theory</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Electrocatalysts</topic><topic>Electron transfer</topic><topic>Hydroxides</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Intermediates</topic><topic>Intermetallic compounds</topic><topic>Iron compounds</topic><topic>MATERIALS SCIENCE</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Nickel compounds</topic><topic>Oxygen</topic><topic>Oxygen evolution reactions</topic><topic>Structural stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Xueting</creatorcontrib><creatorcontrib>Jiao, Qingze</creatorcontrib><creatorcontrib>Dai, Zheng</creatorcontrib><creatorcontrib>Dang, Yanliu</creatorcontrib><creatorcontrib>Suib, Steven L</creatorcontrib><creatorcontrib>Zhang, Jiatao</creatorcontrib><creatorcontrib>Zhao, Yun</creatorcontrib><creatorcontrib>Li, Hansheng</creatorcontrib><creatorcontrib>Feng, Caihong</creatorcontrib><creatorcontrib>Li, Anran</creatorcontrib><creatorcontrib>Univ. of Connecticut, Storrs, CT (United States)</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Xueting</au><au>Jiao, Qingze</au><au>Dai, Zheng</au><au>Dang, Yanliu</au><au>Suib, Steven L</au><au>Zhang, Jiatao</au><au>Zhao, Yun</au><au>Li, Hansheng</au><au>Feng, Caihong</au><au>Li, Anran</au><aucorp>Univ. of Connecticut, Storrs, CT (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revealing the effect of interfacial electron transfer in heterostructured Co9S8@NiFe LDH for enhanced electrocatalytic oxygen evolution</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2021-05-28</date><risdate>2021</risdate><volume>9</volume><issue>20</issue><spage>12244</spage><epage>12254</epage><pages>12244-12254</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Heterointerface engineering is a desirable way to rationally design efficient and low-cost electrocatalysts for the oxygen evolution reaction (OER). Herein, urchin-like Co9S8@NiFe layered double hydroxide (Co9S8@NiFe LDH) heterostructured hollow spheres are assembled from Co9S8 hollow spheres as the core and porous NiFe LDH nanowires as the shell. The heterostructured hollow spheres show a small overpotential of 220 mV at a current density of 10 mA cm−2, a low Tafel slope of 52.0 mV dec−1, and robust stability, which is better than that of commercial IrO2 and most reported non-precious electrocatalysts. Density functional theory (DFT) calculations show that the synergetic effect at the interface could improve the electrical conductivity of Co9S8@NiFe LDH, induce electron transfer from NiFe LDH to Co9S8, and lower the energy barriers of intermediates for the OER, leading to enhanced electrocatalytic activity. Meanwhile, the urchin-like hollow structure with nanopores and super-hydrophilicity can provide desired structural stability, facilitate ion penetration and release bubbles, improving the accessibility of active sites and thereby boosting OER catalytic performance. This work provides a viable route to develop high performance electrocatalysts for the OER.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ta02318g</doi><tpages>11</tpages><orcidid>https://orcid.org/0000000228250904</orcidid><orcidid>https://orcid.org/0000000174144902</orcidid><orcidid>https://orcid.org/0000000313998407</orcidid><orcidid>https://orcid.org/0000000244329305</orcidid><orcidid>https://orcid.org/000000033073311X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2021-05, Vol.9 (20), p.12244-12254 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_osti_scitechconnect_1849924 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Cobalt sulfide Density functional theory Electrical conductivity Electrical resistivity Electrocatalysts Electron transfer Hydroxides INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Intermediates Intermetallic compounds Iron compounds MATERIALS SCIENCE Nanotechnology Nanowires Nickel compounds Oxygen Oxygen evolution reactions Structural stability |
title | Revealing the effect of interfacial electron transfer in heterostructured Co9S8@NiFe LDH for enhanced electrocatalytic oxygen evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A59%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revealing%20the%20effect%20of%20interfacial%20electron%20transfer%20in%20heterostructured%20Co9S8@NiFe%20LDH%20for%20enhanced%20electrocatalytic%20oxygen%20evolution&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Feng,%20Xueting&rft.aucorp=Univ.%20of%20Connecticut,%20Storrs,%20CT%20(United%20States)&rft.date=2021-05-28&rft.volume=9&rft.issue=20&rft.spage=12244&rft.epage=12254&rft.pages=12244-12254&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d1ta02318g&rft_dat=%3Cproquest_osti_%3E2531568073%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2531568073&rft_id=info:pmid/&rfr_iscdi=true |