Revealing the effect of interfacial electron transfer in heterostructured Co9S8@NiFe LDH for enhanced electrocatalytic oxygen evolution

Heterointerface engineering is a desirable way to rationally design efficient and low-cost electrocatalysts for the oxygen evolution reaction (OER). Herein, urchin-like Co9S8@NiFe layered double hydroxide (Co9S8@NiFe LDH) heterostructured hollow spheres are assembled from Co9S8 hollow spheres as the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-05, Vol.9 (20), p.12244-12254
Hauptverfasser: Feng, Xueting, Jiao, Qingze, Dai, Zheng, Dang, Yanliu, Suib, Steven L, Zhang, Jiatao, Zhao, Yun, Li, Hansheng, Feng, Caihong, Li, Anran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12254
container_issue 20
container_start_page 12244
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 9
creator Feng, Xueting
Jiao, Qingze
Dai, Zheng
Dang, Yanliu
Suib, Steven L
Zhang, Jiatao
Zhao, Yun
Li, Hansheng
Feng, Caihong
Li, Anran
description Heterointerface engineering is a desirable way to rationally design efficient and low-cost electrocatalysts for the oxygen evolution reaction (OER). Herein, urchin-like Co9S8@NiFe layered double hydroxide (Co9S8@NiFe LDH) heterostructured hollow spheres are assembled from Co9S8 hollow spheres as the core and porous NiFe LDH nanowires as the shell. The heterostructured hollow spheres show a small overpotential of 220 mV at a current density of 10 mA cm−2, a low Tafel slope of 52.0 mV dec−1, and robust stability, which is better than that of commercial IrO2 and most reported non-precious electrocatalysts. Density functional theory (DFT) calculations show that the synergetic effect at the interface could improve the electrical conductivity of Co9S8@NiFe LDH, induce electron transfer from NiFe LDH to Co9S8, and lower the energy barriers of intermediates for the OER, leading to enhanced electrocatalytic activity. Meanwhile, the urchin-like hollow structure with nanopores and super-hydrophilicity can provide desired structural stability, facilitate ion penetration and release bubbles, improving the accessibility of active sites and thereby boosting OER catalytic performance. This work provides a viable route to develop high performance electrocatalysts for the OER.
doi_str_mv 10.1039/d1ta02318g
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1849924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2531568073</sourcerecordid><originalsourceid>FETCH-LOGICAL-g283t-bbe70e6ced6444a9bf02c045e4258aead171538a3bb6be1e3ffe6953b75f512a3</originalsourceid><addsrcrecordid>eNo9j91KAzEQhYMoWGpvfIKg16v53U3ulGqtUBT8uV6y6WS7ZUk0my32CXxtAy3OzQznHA7fIHRJyQ0lXN-uaTKEcaraEzRhRJKiEro8_b-VOkezYdiSPIqQUusJ-n2DHZi-8y1OG8DgHNiEg8OdTxCdsZ3pMfRZjMHjFI0fHMTs4g3kQBhSHG0aI6zxPOh3dffSLQCvHpbYhYjBb4y32Ts2WJNMv0-dxeFn34LHsAv9mLrgL9CZM_0As-Oeos_F48d8Waxen57n96uiZYqnommgIlDmylIIYXTjCLNESBBMKgNmTSsquTK8acoGKPD8T6klbyrpJGWGT9HVoTeTd_VguwR2Y4P3ma-mSmjNRA5dH0JfMXyPMKR6G8boM1fNJKeyVKTi_A-HBnJy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2531568073</pqid></control><display><type>article</type><title>Revealing the effect of interfacial electron transfer in heterostructured Co9S8@NiFe LDH for enhanced electrocatalytic oxygen evolution</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Feng, Xueting ; Jiao, Qingze ; Dai, Zheng ; Dang, Yanliu ; Suib, Steven L ; Zhang, Jiatao ; Zhao, Yun ; Li, Hansheng ; Feng, Caihong ; Li, Anran</creator><creatorcontrib>Feng, Xueting ; Jiao, Qingze ; Dai, Zheng ; Dang, Yanliu ; Suib, Steven L ; Zhang, Jiatao ; Zhao, Yun ; Li, Hansheng ; Feng, Caihong ; Li, Anran ; Univ. of Connecticut, Storrs, CT (United States)</creatorcontrib><description>Heterointerface engineering is a desirable way to rationally design efficient and low-cost electrocatalysts for the oxygen evolution reaction (OER). Herein, urchin-like Co9S8@NiFe layered double hydroxide (Co9S8@NiFe LDH) heterostructured hollow spheres are assembled from Co9S8 hollow spheres as the core and porous NiFe LDH nanowires as the shell. The heterostructured hollow spheres show a small overpotential of 220 mV at a current density of 10 mA cm−2, a low Tafel slope of 52.0 mV dec−1, and robust stability, which is better than that of commercial IrO2 and most reported non-precious electrocatalysts. Density functional theory (DFT) calculations show that the synergetic effect at the interface could improve the electrical conductivity of Co9S8@NiFe LDH, induce electron transfer from NiFe LDH to Co9S8, and lower the energy barriers of intermediates for the OER, leading to enhanced electrocatalytic activity. Meanwhile, the urchin-like hollow structure with nanopores and super-hydrophilicity can provide desired structural stability, facilitate ion penetration and release bubbles, improving the accessibility of active sites and thereby boosting OER catalytic performance. This work provides a viable route to develop high performance electrocatalysts for the OER.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d1ta02318g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Cobalt sulfide ; Density functional theory ; Electrical conductivity ; Electrical resistivity ; Electrocatalysts ; Electron transfer ; Hydroxides ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Intermediates ; Intermetallic compounds ; Iron compounds ; MATERIALS SCIENCE ; Nanotechnology ; Nanowires ; Nickel compounds ; Oxygen ; Oxygen evolution reactions ; Structural stability</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2021-05, Vol.9 (20), p.12244-12254</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000228250904 ; 0000000174144902 ; 0000000313998407 ; 0000000244329305 ; 000000033073311X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1849924$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, Xueting</creatorcontrib><creatorcontrib>Jiao, Qingze</creatorcontrib><creatorcontrib>Dai, Zheng</creatorcontrib><creatorcontrib>Dang, Yanliu</creatorcontrib><creatorcontrib>Suib, Steven L</creatorcontrib><creatorcontrib>Zhang, Jiatao</creatorcontrib><creatorcontrib>Zhao, Yun</creatorcontrib><creatorcontrib>Li, Hansheng</creatorcontrib><creatorcontrib>Feng, Caihong</creatorcontrib><creatorcontrib>Li, Anran</creatorcontrib><creatorcontrib>Univ. of Connecticut, Storrs, CT (United States)</creatorcontrib><title>Revealing the effect of interfacial electron transfer in heterostructured Co9S8@NiFe LDH for enhanced electrocatalytic oxygen evolution</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Heterointerface engineering is a desirable way to rationally design efficient and low-cost electrocatalysts for the oxygen evolution reaction (OER). Herein, urchin-like Co9S8@NiFe layered double hydroxide (Co9S8@NiFe LDH) heterostructured hollow spheres are assembled from Co9S8 hollow spheres as the core and porous NiFe LDH nanowires as the shell. The heterostructured hollow spheres show a small overpotential of 220 mV at a current density of 10 mA cm−2, a low Tafel slope of 52.0 mV dec−1, and robust stability, which is better than that of commercial IrO2 and most reported non-precious electrocatalysts. Density functional theory (DFT) calculations show that the synergetic effect at the interface could improve the electrical conductivity of Co9S8@NiFe LDH, induce electron transfer from NiFe LDH to Co9S8, and lower the energy barriers of intermediates for the OER, leading to enhanced electrocatalytic activity. Meanwhile, the urchin-like hollow structure with nanopores and super-hydrophilicity can provide desired structural stability, facilitate ion penetration and release bubbles, improving the accessibility of active sites and thereby boosting OER catalytic performance. This work provides a viable route to develop high performance electrocatalysts for the OER.</description><subject>Cobalt sulfide</subject><subject>Density functional theory</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Electrocatalysts</subject><subject>Electron transfer</subject><subject>Hydroxides</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Intermediates</subject><subject>Intermetallic compounds</subject><subject>Iron compounds</subject><subject>MATERIALS SCIENCE</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Nickel compounds</subject><subject>Oxygen</subject><subject>Oxygen evolution reactions</subject><subject>Structural stability</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9j91KAzEQhYMoWGpvfIKg16v53U3ulGqtUBT8uV6y6WS7ZUk0my32CXxtAy3OzQznHA7fIHRJyQ0lXN-uaTKEcaraEzRhRJKiEro8_b-VOkezYdiSPIqQUusJ-n2DHZi-8y1OG8DgHNiEg8OdTxCdsZ3pMfRZjMHjFI0fHMTs4g3kQBhSHG0aI6zxPOh3dffSLQCvHpbYhYjBb4y32Ts2WJNMv0-dxeFn34LHsAv9mLrgL9CZM_0As-Oeos_F48d8Waxen57n96uiZYqnommgIlDmylIIYXTjCLNESBBMKgNmTSsquTK8acoGKPD8T6klbyrpJGWGT9HVoTeTd_VguwR2Y4P3ma-mSmjNRA5dH0JfMXyPMKR6G8boM1fNJKeyVKTi_A-HBnJy</recordid><startdate>20210528</startdate><enddate>20210528</enddate><creator>Feng, Xueting</creator><creator>Jiao, Qingze</creator><creator>Dai, Zheng</creator><creator>Dang, Yanliu</creator><creator>Suib, Steven L</creator><creator>Zhang, Jiatao</creator><creator>Zhao, Yun</creator><creator>Li, Hansheng</creator><creator>Feng, Caihong</creator><creator>Li, Anran</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000228250904</orcidid><orcidid>https://orcid.org/0000000174144902</orcidid><orcidid>https://orcid.org/0000000313998407</orcidid><orcidid>https://orcid.org/0000000244329305</orcidid><orcidid>https://orcid.org/000000033073311X</orcidid></search><sort><creationdate>20210528</creationdate><title>Revealing the effect of interfacial electron transfer in heterostructured Co9S8@NiFe LDH for enhanced electrocatalytic oxygen evolution</title><author>Feng, Xueting ; Jiao, Qingze ; Dai, Zheng ; Dang, Yanliu ; Suib, Steven L ; Zhang, Jiatao ; Zhao, Yun ; Li, Hansheng ; Feng, Caihong ; Li, Anran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g283t-bbe70e6ced6444a9bf02c045e4258aead171538a3bb6be1e3ffe6953b75f512a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cobalt sulfide</topic><topic>Density functional theory</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Electrocatalysts</topic><topic>Electron transfer</topic><topic>Hydroxides</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Intermediates</topic><topic>Intermetallic compounds</topic><topic>Iron compounds</topic><topic>MATERIALS SCIENCE</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Nickel compounds</topic><topic>Oxygen</topic><topic>Oxygen evolution reactions</topic><topic>Structural stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Xueting</creatorcontrib><creatorcontrib>Jiao, Qingze</creatorcontrib><creatorcontrib>Dai, Zheng</creatorcontrib><creatorcontrib>Dang, Yanliu</creatorcontrib><creatorcontrib>Suib, Steven L</creatorcontrib><creatorcontrib>Zhang, Jiatao</creatorcontrib><creatorcontrib>Zhao, Yun</creatorcontrib><creatorcontrib>Li, Hansheng</creatorcontrib><creatorcontrib>Feng, Caihong</creatorcontrib><creatorcontrib>Li, Anran</creatorcontrib><creatorcontrib>Univ. of Connecticut, Storrs, CT (United States)</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Xueting</au><au>Jiao, Qingze</au><au>Dai, Zheng</au><au>Dang, Yanliu</au><au>Suib, Steven L</au><au>Zhang, Jiatao</au><au>Zhao, Yun</au><au>Li, Hansheng</au><au>Feng, Caihong</au><au>Li, Anran</au><aucorp>Univ. of Connecticut, Storrs, CT (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revealing the effect of interfacial electron transfer in heterostructured Co9S8@NiFe LDH for enhanced electrocatalytic oxygen evolution</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2021-05-28</date><risdate>2021</risdate><volume>9</volume><issue>20</issue><spage>12244</spage><epage>12254</epage><pages>12244-12254</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Heterointerface engineering is a desirable way to rationally design efficient and low-cost electrocatalysts for the oxygen evolution reaction (OER). Herein, urchin-like Co9S8@NiFe layered double hydroxide (Co9S8@NiFe LDH) heterostructured hollow spheres are assembled from Co9S8 hollow spheres as the core and porous NiFe LDH nanowires as the shell. The heterostructured hollow spheres show a small overpotential of 220 mV at a current density of 10 mA cm−2, a low Tafel slope of 52.0 mV dec−1, and robust stability, which is better than that of commercial IrO2 and most reported non-precious electrocatalysts. Density functional theory (DFT) calculations show that the synergetic effect at the interface could improve the electrical conductivity of Co9S8@NiFe LDH, induce electron transfer from NiFe LDH to Co9S8, and lower the energy barriers of intermediates for the OER, leading to enhanced electrocatalytic activity. Meanwhile, the urchin-like hollow structure with nanopores and super-hydrophilicity can provide desired structural stability, facilitate ion penetration and release bubbles, improving the accessibility of active sites and thereby boosting OER catalytic performance. This work provides a viable route to develop high performance electrocatalysts for the OER.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ta02318g</doi><tpages>11</tpages><orcidid>https://orcid.org/0000000228250904</orcidid><orcidid>https://orcid.org/0000000174144902</orcidid><orcidid>https://orcid.org/0000000313998407</orcidid><orcidid>https://orcid.org/0000000244329305</orcidid><orcidid>https://orcid.org/000000033073311X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2021-05, Vol.9 (20), p.12244-12254
issn 2050-7488
2050-7496
language eng
recordid cdi_osti_scitechconnect_1849924
source Royal Society Of Chemistry Journals 2008-
subjects Cobalt sulfide
Density functional theory
Electrical conductivity
Electrical resistivity
Electrocatalysts
Electron transfer
Hydroxides
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Intermediates
Intermetallic compounds
Iron compounds
MATERIALS SCIENCE
Nanotechnology
Nanowires
Nickel compounds
Oxygen
Oxygen evolution reactions
Structural stability
title Revealing the effect of interfacial electron transfer in heterostructured Co9S8@NiFe LDH for enhanced electrocatalytic oxygen evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A59%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revealing%20the%20effect%20of%20interfacial%20electron%20transfer%20in%20heterostructured%20Co9S8@NiFe%20LDH%20for%20enhanced%20electrocatalytic%20oxygen%20evolution&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Feng,%20Xueting&rft.aucorp=Univ.%20of%20Connecticut,%20Storrs,%20CT%20(United%20States)&rft.date=2021-05-28&rft.volume=9&rft.issue=20&rft.spage=12244&rft.epage=12254&rft.pages=12244-12254&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d1ta02318g&rft_dat=%3Cproquest_osti_%3E2531568073%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2531568073&rft_id=info:pmid/&rfr_iscdi=true