Predictive Design Model for Low-Dimensional Organic–Inorganic Halide Perovskites Assisted by Machine Learning

Low-dimensional organic–inorganic halide perovskites have attracted interest for their properties in exciton dynamics, broad-band emission, magnetic spin selectivity. However, there is no quantitative model for predicting the structure-directing effect of organic cations on the dimensionality of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2021-08, Vol.143 (32), p.12766-12776
Hauptverfasser: Lyu, Ruiyang, Moore, Curtis E, Liu, Tianyu, Yu, Yongze, Wu, Yiying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12776
container_issue 32
container_start_page 12766
container_title Journal of the American Chemical Society
container_volume 143
creator Lyu, Ruiyang
Moore, Curtis E
Liu, Tianyu
Yu, Yongze
Wu, Yiying
description Low-dimensional organic–inorganic halide perovskites have attracted interest for their properties in exciton dynamics, broad-band emission, magnetic spin selectivity. However, there is no quantitative model for predicting the structure-directing effect of organic cations on the dimensionality of these low-dimensional perovskites. Here, we report a machine learning (ML)-assisted approach to predict the dimensionality of lead iodide-based perovskites. A literature review reveals 86 reported amines that are classified into “2D”-forming and “non-2D”-forming based on the dimensionality of their perovskites. Machining learning models were trained and tested based on the classification and descriptor features of these ammonium cations. Four structural features, including steric effect index, eccentricity, largest ring size, and hydrogen-bond donor, have been identified as the key controlling factors. On the basis of these features, a quantified equation is created to calculate the probability of forming 2D perovskite for a selected amine. To further illustrate its predicting capability, the built model is applied to several untested amines, and the predicted dimensionality is verified by growing single crystals of perovskites from these amines. This work represents a step toward predicting the crystal structures of low dimensional hybrid halide perovskites using ML as a tool.
doi_str_mv 10.1021/jacs.1c05441
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1849785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2559433858</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-a56d21b9d3fab7bff5c748d2baa89a70141246eebf1b97e065b0c9e6be5d1b03</originalsourceid><addsrcrecordid>eNptkU1PGzEQhi3UCkLaW8-V1RMHFmyvvR9HFEqJFAQH7pY_ZoPTjU09GxA3_kP_Ib-kGyVtL5xmRnrmndH7EvKFszPOBD9fGYdn3DElJT8gE64EKxQX1QcyYYyJom6q8ogcI67GUYqGH5KjUpaqrlU1Iekugw9uCE9ALwHDMtKb5KGnXcp0kZ6Ly7CGiCFF09PbvDQxuLfX3_OYdj29Nn3wQO8gpyf8GQZAeoEYcABP7Qu9Me4hRKALMDmGuPxEPnamR_i8r1Nyf_X9fnZdLG5_zGcXi8KUig-FUZUX3La-7IytbdcpV8vGC2tM05qaccmFrABsN0I1sEpZ5lqoLCjPLSun5NtONuEQNLrxL_fgUozgBs0b2daNGqGTHfSY068N4KDXAR30vYmQNqiFUq0sy0Y1I3q6Q11OiBk6_ZjD2uQXzZnexqC3Meh9DCP-da-8sWvw_-C_vv8_vd1apU0e7cX3tf4AAaiSvQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2559433858</pqid></control><display><type>article</type><title>Predictive Design Model for Low-Dimensional Organic–Inorganic Halide Perovskites Assisted by Machine Learning</title><source>American Chemical Society Journals</source><creator>Lyu, Ruiyang ; Moore, Curtis E ; Liu, Tianyu ; Yu, Yongze ; Wu, Yiying</creator><creatorcontrib>Lyu, Ruiyang ; Moore, Curtis E ; Liu, Tianyu ; Yu, Yongze ; Wu, Yiying ; The Ohio State Univ., Columbus, OH (United States)</creatorcontrib><description>Low-dimensional organic–inorganic halide perovskites have attracted interest for their properties in exciton dynamics, broad-band emission, magnetic spin selectivity. However, there is no quantitative model for predicting the structure-directing effect of organic cations on the dimensionality of these low-dimensional perovskites. Here, we report a machine learning (ML)-assisted approach to predict the dimensionality of lead iodide-based perovskites. A literature review reveals 86 reported amines that are classified into “2D”-forming and “non-2D”-forming based on the dimensionality of their perovskites. Machining learning models were trained and tested based on the classification and descriptor features of these ammonium cations. Four structural features, including steric effect index, eccentricity, largest ring size, and hydrogen-bond donor, have been identified as the key controlling factors. On the basis of these features, a quantified equation is created to calculate the probability of forming 2D perovskite for a selected amine. To further illustrate its predicting capability, the built model is applied to several untested amines, and the predicted dimensionality is verified by growing single crystals of perovskites from these amines. This work represents a step toward predicting the crystal structures of low dimensional hybrid halide perovskites using ML as a tool.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.1c05441</identifier><identifier>PMID: 34357756</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemistry</subject><ispartof>Journal of the American Chemical Society, 2021-08, Vol.143 (32), p.12766-12776</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-a56d21b9d3fab7bff5c748d2baa89a70141246eebf1b97e065b0c9e6be5d1b03</citedby><cites>FETCH-LOGICAL-a351t-a56d21b9d3fab7bff5c748d2baa89a70141246eebf1b97e065b0c9e6be5d1b03</cites><orcidid>0000-0001-8861-5322 ; 0000-0002-5159-2435 ; 0000-0001-9359-1863 ; 0000-0002-3311-7155 ; 0000-0002-2537-4231 ; 0000000225374231 ; 0000000233117155 ; 0000000193591863 ; 0000000251592435 ; 0000000188615322</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.1c05441$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.1c05441$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34357756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1849785$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lyu, Ruiyang</creatorcontrib><creatorcontrib>Moore, Curtis E</creatorcontrib><creatorcontrib>Liu, Tianyu</creatorcontrib><creatorcontrib>Yu, Yongze</creatorcontrib><creatorcontrib>Wu, Yiying</creatorcontrib><creatorcontrib>The Ohio State Univ., Columbus, OH (United States)</creatorcontrib><title>Predictive Design Model for Low-Dimensional Organic–Inorganic Halide Perovskites Assisted by Machine Learning</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Low-dimensional organic–inorganic halide perovskites have attracted interest for their properties in exciton dynamics, broad-band emission, magnetic spin selectivity. However, there is no quantitative model for predicting the structure-directing effect of organic cations on the dimensionality of these low-dimensional perovskites. Here, we report a machine learning (ML)-assisted approach to predict the dimensionality of lead iodide-based perovskites. A literature review reveals 86 reported amines that are classified into “2D”-forming and “non-2D”-forming based on the dimensionality of their perovskites. Machining learning models were trained and tested based on the classification and descriptor features of these ammonium cations. Four structural features, including steric effect index, eccentricity, largest ring size, and hydrogen-bond donor, have been identified as the key controlling factors. On the basis of these features, a quantified equation is created to calculate the probability of forming 2D perovskite for a selected amine. To further illustrate its predicting capability, the built model is applied to several untested amines, and the predicted dimensionality is verified by growing single crystals of perovskites from these amines. This work represents a step toward predicting the crystal structures of low dimensional hybrid halide perovskites using ML as a tool.</description><subject>Chemistry</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNptkU1PGzEQhi3UCkLaW8-V1RMHFmyvvR9HFEqJFAQH7pY_ZoPTjU09GxA3_kP_Ib-kGyVtL5xmRnrmndH7EvKFszPOBD9fGYdn3DElJT8gE64EKxQX1QcyYYyJom6q8ogcI67GUYqGH5KjUpaqrlU1Iekugw9uCE9ALwHDMtKb5KGnXcp0kZ6Ly7CGiCFF09PbvDQxuLfX3_OYdj29Nn3wQO8gpyf8GQZAeoEYcABP7Qu9Me4hRKALMDmGuPxEPnamR_i8r1Nyf_X9fnZdLG5_zGcXi8KUig-FUZUX3La-7IytbdcpV8vGC2tM05qaccmFrABsN0I1sEpZ5lqoLCjPLSun5NtONuEQNLrxL_fgUozgBs0b2daNGqGTHfSY068N4KDXAR30vYmQNqiFUq0sy0Y1I3q6Q11OiBk6_ZjD2uQXzZnexqC3Meh9DCP-da-8sWvw_-C_vv8_vd1apU0e7cX3tf4AAaiSvQ</recordid><startdate>20210818</startdate><enddate>20210818</enddate><creator>Lyu, Ruiyang</creator><creator>Moore, Curtis E</creator><creator>Liu, Tianyu</creator><creator>Yu, Yongze</creator><creator>Wu, Yiying</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8861-5322</orcidid><orcidid>https://orcid.org/0000-0002-5159-2435</orcidid><orcidid>https://orcid.org/0000-0001-9359-1863</orcidid><orcidid>https://orcid.org/0000-0002-3311-7155</orcidid><orcidid>https://orcid.org/0000-0002-2537-4231</orcidid><orcidid>https://orcid.org/0000000225374231</orcidid><orcidid>https://orcid.org/0000000233117155</orcidid><orcidid>https://orcid.org/0000000193591863</orcidid><orcidid>https://orcid.org/0000000251592435</orcidid><orcidid>https://orcid.org/0000000188615322</orcidid></search><sort><creationdate>20210818</creationdate><title>Predictive Design Model for Low-Dimensional Organic–Inorganic Halide Perovskites Assisted by Machine Learning</title><author>Lyu, Ruiyang ; Moore, Curtis E ; Liu, Tianyu ; Yu, Yongze ; Wu, Yiying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-a56d21b9d3fab7bff5c748d2baa89a70141246eebf1b97e065b0c9e6be5d1b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyu, Ruiyang</creatorcontrib><creatorcontrib>Moore, Curtis E</creatorcontrib><creatorcontrib>Liu, Tianyu</creatorcontrib><creatorcontrib>Yu, Yongze</creatorcontrib><creatorcontrib>Wu, Yiying</creatorcontrib><creatorcontrib>The Ohio State Univ., Columbus, OH (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyu, Ruiyang</au><au>Moore, Curtis E</au><au>Liu, Tianyu</au><au>Yu, Yongze</au><au>Wu, Yiying</au><aucorp>The Ohio State Univ., Columbus, OH (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive Design Model for Low-Dimensional Organic–Inorganic Halide Perovskites Assisted by Machine Learning</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2021-08-18</date><risdate>2021</risdate><volume>143</volume><issue>32</issue><spage>12766</spage><epage>12776</epage><pages>12766-12776</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Low-dimensional organic–inorganic halide perovskites have attracted interest for their properties in exciton dynamics, broad-band emission, magnetic spin selectivity. However, there is no quantitative model for predicting the structure-directing effect of organic cations on the dimensionality of these low-dimensional perovskites. Here, we report a machine learning (ML)-assisted approach to predict the dimensionality of lead iodide-based perovskites. A literature review reveals 86 reported amines that are classified into “2D”-forming and “non-2D”-forming based on the dimensionality of their perovskites. Machining learning models were trained and tested based on the classification and descriptor features of these ammonium cations. Four structural features, including steric effect index, eccentricity, largest ring size, and hydrogen-bond donor, have been identified as the key controlling factors. On the basis of these features, a quantified equation is created to calculate the probability of forming 2D perovskite for a selected amine. To further illustrate its predicting capability, the built model is applied to several untested amines, and the predicted dimensionality is verified by growing single crystals of perovskites from these amines. This work represents a step toward predicting the crystal structures of low dimensional hybrid halide perovskites using ML as a tool.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34357756</pmid><doi>10.1021/jacs.1c05441</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8861-5322</orcidid><orcidid>https://orcid.org/0000-0002-5159-2435</orcidid><orcidid>https://orcid.org/0000-0001-9359-1863</orcidid><orcidid>https://orcid.org/0000-0002-3311-7155</orcidid><orcidid>https://orcid.org/0000-0002-2537-4231</orcidid><orcidid>https://orcid.org/0000000225374231</orcidid><orcidid>https://orcid.org/0000000233117155</orcidid><orcidid>https://orcid.org/0000000193591863</orcidid><orcidid>https://orcid.org/0000000251592435</orcidid><orcidid>https://orcid.org/0000000188615322</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2021-08, Vol.143 (32), p.12766-12776
issn 0002-7863
1520-5126
language eng
recordid cdi_osti_scitechconnect_1849785
source American Chemical Society Journals
subjects Chemistry
title Predictive Design Model for Low-Dimensional Organic–Inorganic Halide Perovskites Assisted by Machine Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A11%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20Design%20Model%20for%20Low-Dimensional%20Organic%E2%80%93Inorganic%20Halide%20Perovskites%20Assisted%20by%20Machine%20Learning&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Lyu,%20Ruiyang&rft.aucorp=The%20Ohio%20State%20Univ.,%20Columbus,%20OH%20(United%20States)&rft.date=2021-08-18&rft.volume=143&rft.issue=32&rft.spage=12766&rft.epage=12776&rft.pages=12766-12776&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.1c05441&rft_dat=%3Cproquest_osti_%3E2559433858%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2559433858&rft_id=info:pmid/34357756&rfr_iscdi=true