Predictive Design Model for Low-Dimensional Organic–Inorganic Halide Perovskites Assisted by Machine Learning
Low-dimensional organic–inorganic halide perovskites have attracted interest for their properties in exciton dynamics, broad-band emission, magnetic spin selectivity. However, there is no quantitative model for predicting the structure-directing effect of organic cations on the dimensionality of the...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2021-08, Vol.143 (32), p.12766-12776 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12776 |
---|---|
container_issue | 32 |
container_start_page | 12766 |
container_title | Journal of the American Chemical Society |
container_volume | 143 |
creator | Lyu, Ruiyang Moore, Curtis E Liu, Tianyu Yu, Yongze Wu, Yiying |
description | Low-dimensional organic–inorganic halide perovskites have attracted interest for their properties in exciton dynamics, broad-band emission, magnetic spin selectivity. However, there is no quantitative model for predicting the structure-directing effect of organic cations on the dimensionality of these low-dimensional perovskites. Here, we report a machine learning (ML)-assisted approach to predict the dimensionality of lead iodide-based perovskites. A literature review reveals 86 reported amines that are classified into “2D”-forming and “non-2D”-forming based on the dimensionality of their perovskites. Machining learning models were trained and tested based on the classification and descriptor features of these ammonium cations. Four structural features, including steric effect index, eccentricity, largest ring size, and hydrogen-bond donor, have been identified as the key controlling factors. On the basis of these features, a quantified equation is created to calculate the probability of forming 2D perovskite for a selected amine. To further illustrate its predicting capability, the built model is applied to several untested amines, and the predicted dimensionality is verified by growing single crystals of perovskites from these amines. This work represents a step toward predicting the crystal structures of low dimensional hybrid halide perovskites using ML as a tool. |
doi_str_mv | 10.1021/jacs.1c05441 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1849785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2559433858</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-a56d21b9d3fab7bff5c748d2baa89a70141246eebf1b97e065b0c9e6be5d1b03</originalsourceid><addsrcrecordid>eNptkU1PGzEQhi3UCkLaW8-V1RMHFmyvvR9HFEqJFAQH7pY_ZoPTjU09GxA3_kP_Ib-kGyVtL5xmRnrmndH7EvKFszPOBD9fGYdn3DElJT8gE64EKxQX1QcyYYyJom6q8ogcI67GUYqGH5KjUpaqrlU1Iekugw9uCE9ALwHDMtKb5KGnXcp0kZ6Ly7CGiCFF09PbvDQxuLfX3_OYdj29Nn3wQO8gpyf8GQZAeoEYcABP7Qu9Me4hRKALMDmGuPxEPnamR_i8r1Nyf_X9fnZdLG5_zGcXi8KUig-FUZUX3La-7IytbdcpV8vGC2tM05qaccmFrABsN0I1sEpZ5lqoLCjPLSun5NtONuEQNLrxL_fgUozgBs0b2daNGqGTHfSY068N4KDXAR30vYmQNqiFUq0sy0Y1I3q6Q11OiBk6_ZjD2uQXzZnexqC3Meh9DCP-da-8sWvw_-C_vv8_vd1apU0e7cX3tf4AAaiSvQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2559433858</pqid></control><display><type>article</type><title>Predictive Design Model for Low-Dimensional Organic–Inorganic Halide Perovskites Assisted by Machine Learning</title><source>American Chemical Society Journals</source><creator>Lyu, Ruiyang ; Moore, Curtis E ; Liu, Tianyu ; Yu, Yongze ; Wu, Yiying</creator><creatorcontrib>Lyu, Ruiyang ; Moore, Curtis E ; Liu, Tianyu ; Yu, Yongze ; Wu, Yiying ; The Ohio State Univ., Columbus, OH (United States)</creatorcontrib><description>Low-dimensional organic–inorganic halide perovskites have attracted interest for their properties in exciton dynamics, broad-band emission, magnetic spin selectivity. However, there is no quantitative model for predicting the structure-directing effect of organic cations on the dimensionality of these low-dimensional perovskites. Here, we report a machine learning (ML)-assisted approach to predict the dimensionality of lead iodide-based perovskites. A literature review reveals 86 reported amines that are classified into “2D”-forming and “non-2D”-forming based on the dimensionality of their perovskites. Machining learning models were trained and tested based on the classification and descriptor features of these ammonium cations. Four structural features, including steric effect index, eccentricity, largest ring size, and hydrogen-bond donor, have been identified as the key controlling factors. On the basis of these features, a quantified equation is created to calculate the probability of forming 2D perovskite for a selected amine. To further illustrate its predicting capability, the built model is applied to several untested amines, and the predicted dimensionality is verified by growing single crystals of perovskites from these amines. This work represents a step toward predicting the crystal structures of low dimensional hybrid halide perovskites using ML as a tool.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.1c05441</identifier><identifier>PMID: 34357756</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemistry</subject><ispartof>Journal of the American Chemical Society, 2021-08, Vol.143 (32), p.12766-12776</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-a56d21b9d3fab7bff5c748d2baa89a70141246eebf1b97e065b0c9e6be5d1b03</citedby><cites>FETCH-LOGICAL-a351t-a56d21b9d3fab7bff5c748d2baa89a70141246eebf1b97e065b0c9e6be5d1b03</cites><orcidid>0000-0001-8861-5322 ; 0000-0002-5159-2435 ; 0000-0001-9359-1863 ; 0000-0002-3311-7155 ; 0000-0002-2537-4231 ; 0000000225374231 ; 0000000233117155 ; 0000000193591863 ; 0000000251592435 ; 0000000188615322</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.1c05441$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.1c05441$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34357756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1849785$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lyu, Ruiyang</creatorcontrib><creatorcontrib>Moore, Curtis E</creatorcontrib><creatorcontrib>Liu, Tianyu</creatorcontrib><creatorcontrib>Yu, Yongze</creatorcontrib><creatorcontrib>Wu, Yiying</creatorcontrib><creatorcontrib>The Ohio State Univ., Columbus, OH (United States)</creatorcontrib><title>Predictive Design Model for Low-Dimensional Organic–Inorganic Halide Perovskites Assisted by Machine Learning</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Low-dimensional organic–inorganic halide perovskites have attracted interest for their properties in exciton dynamics, broad-band emission, magnetic spin selectivity. However, there is no quantitative model for predicting the structure-directing effect of organic cations on the dimensionality of these low-dimensional perovskites. Here, we report a machine learning (ML)-assisted approach to predict the dimensionality of lead iodide-based perovskites. A literature review reveals 86 reported amines that are classified into “2D”-forming and “non-2D”-forming based on the dimensionality of their perovskites. Machining learning models were trained and tested based on the classification and descriptor features of these ammonium cations. Four structural features, including steric effect index, eccentricity, largest ring size, and hydrogen-bond donor, have been identified as the key controlling factors. On the basis of these features, a quantified equation is created to calculate the probability of forming 2D perovskite for a selected amine. To further illustrate its predicting capability, the built model is applied to several untested amines, and the predicted dimensionality is verified by growing single crystals of perovskites from these amines. This work represents a step toward predicting the crystal structures of low dimensional hybrid halide perovskites using ML as a tool.</description><subject>Chemistry</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNptkU1PGzEQhi3UCkLaW8-V1RMHFmyvvR9HFEqJFAQH7pY_ZoPTjU09GxA3_kP_Ib-kGyVtL5xmRnrmndH7EvKFszPOBD9fGYdn3DElJT8gE64EKxQX1QcyYYyJom6q8ogcI67GUYqGH5KjUpaqrlU1Iekugw9uCE9ALwHDMtKb5KGnXcp0kZ6Ly7CGiCFF09PbvDQxuLfX3_OYdj29Nn3wQO8gpyf8GQZAeoEYcABP7Qu9Me4hRKALMDmGuPxEPnamR_i8r1Nyf_X9fnZdLG5_zGcXi8KUig-FUZUX3La-7IytbdcpV8vGC2tM05qaccmFrABsN0I1sEpZ5lqoLCjPLSun5NtONuEQNLrxL_fgUozgBs0b2daNGqGTHfSY068N4KDXAR30vYmQNqiFUq0sy0Y1I3q6Q11OiBk6_ZjD2uQXzZnexqC3Meh9DCP-da-8sWvw_-C_vv8_vd1apU0e7cX3tf4AAaiSvQ</recordid><startdate>20210818</startdate><enddate>20210818</enddate><creator>Lyu, Ruiyang</creator><creator>Moore, Curtis E</creator><creator>Liu, Tianyu</creator><creator>Yu, Yongze</creator><creator>Wu, Yiying</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8861-5322</orcidid><orcidid>https://orcid.org/0000-0002-5159-2435</orcidid><orcidid>https://orcid.org/0000-0001-9359-1863</orcidid><orcidid>https://orcid.org/0000-0002-3311-7155</orcidid><orcidid>https://orcid.org/0000-0002-2537-4231</orcidid><orcidid>https://orcid.org/0000000225374231</orcidid><orcidid>https://orcid.org/0000000233117155</orcidid><orcidid>https://orcid.org/0000000193591863</orcidid><orcidid>https://orcid.org/0000000251592435</orcidid><orcidid>https://orcid.org/0000000188615322</orcidid></search><sort><creationdate>20210818</creationdate><title>Predictive Design Model for Low-Dimensional Organic–Inorganic Halide Perovskites Assisted by Machine Learning</title><author>Lyu, Ruiyang ; Moore, Curtis E ; Liu, Tianyu ; Yu, Yongze ; Wu, Yiying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-a56d21b9d3fab7bff5c748d2baa89a70141246eebf1b97e065b0c9e6be5d1b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyu, Ruiyang</creatorcontrib><creatorcontrib>Moore, Curtis E</creatorcontrib><creatorcontrib>Liu, Tianyu</creatorcontrib><creatorcontrib>Yu, Yongze</creatorcontrib><creatorcontrib>Wu, Yiying</creatorcontrib><creatorcontrib>The Ohio State Univ., Columbus, OH (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyu, Ruiyang</au><au>Moore, Curtis E</au><au>Liu, Tianyu</au><au>Yu, Yongze</au><au>Wu, Yiying</au><aucorp>The Ohio State Univ., Columbus, OH (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive Design Model for Low-Dimensional Organic–Inorganic Halide Perovskites Assisted by Machine Learning</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2021-08-18</date><risdate>2021</risdate><volume>143</volume><issue>32</issue><spage>12766</spage><epage>12776</epage><pages>12766-12776</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Low-dimensional organic–inorganic halide perovskites have attracted interest for their properties in exciton dynamics, broad-band emission, magnetic spin selectivity. However, there is no quantitative model for predicting the structure-directing effect of organic cations on the dimensionality of these low-dimensional perovskites. Here, we report a machine learning (ML)-assisted approach to predict the dimensionality of lead iodide-based perovskites. A literature review reveals 86 reported amines that are classified into “2D”-forming and “non-2D”-forming based on the dimensionality of their perovskites. Machining learning models were trained and tested based on the classification and descriptor features of these ammonium cations. Four structural features, including steric effect index, eccentricity, largest ring size, and hydrogen-bond donor, have been identified as the key controlling factors. On the basis of these features, a quantified equation is created to calculate the probability of forming 2D perovskite for a selected amine. To further illustrate its predicting capability, the built model is applied to several untested amines, and the predicted dimensionality is verified by growing single crystals of perovskites from these amines. This work represents a step toward predicting the crystal structures of low dimensional hybrid halide perovskites using ML as a tool.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34357756</pmid><doi>10.1021/jacs.1c05441</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8861-5322</orcidid><orcidid>https://orcid.org/0000-0002-5159-2435</orcidid><orcidid>https://orcid.org/0000-0001-9359-1863</orcidid><orcidid>https://orcid.org/0000-0002-3311-7155</orcidid><orcidid>https://orcid.org/0000-0002-2537-4231</orcidid><orcidid>https://orcid.org/0000000225374231</orcidid><orcidid>https://orcid.org/0000000233117155</orcidid><orcidid>https://orcid.org/0000000193591863</orcidid><orcidid>https://orcid.org/0000000251592435</orcidid><orcidid>https://orcid.org/0000000188615322</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2021-08, Vol.143 (32), p.12766-12776 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_osti_scitechconnect_1849785 |
source | American Chemical Society Journals |
subjects | Chemistry |
title | Predictive Design Model for Low-Dimensional Organic–Inorganic Halide Perovskites Assisted by Machine Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A11%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20Design%20Model%20for%20Low-Dimensional%20Organic%E2%80%93Inorganic%20Halide%20Perovskites%20Assisted%20by%20Machine%20Learning&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Lyu,%20Ruiyang&rft.aucorp=The%20Ohio%20State%20Univ.,%20Columbus,%20OH%20(United%20States)&rft.date=2021-08-18&rft.volume=143&rft.issue=32&rft.spage=12766&rft.epage=12776&rft.pages=12766-12776&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.1c05441&rft_dat=%3Cproquest_osti_%3E2559433858%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2559433858&rft_id=info:pmid/34357756&rfr_iscdi=true |