Isopropyl 3‐deoxy‐α‐d‐ribo‐hexopyranoside (isopropyl 3‐deoxy‐α‐d‐glucopyranoside): evaluating trends in structural parameters
Isopropyl 3‐deoxy‐α‐d‐ribo‐hexopyranoside (isopropyl 3‐deoxy‐α‐d‐glucopyranoside), C9H18O5, (I), crystallizes from a methanol–ethyl acetate solvent mixture at room temperature in a 4C1 chair conformation that is slightly distorted towards the C5SC1 twist‐boat form. A comparison of the structural par...
Gespeichert in:
Veröffentlicht in: | Acta crystallographica. Section C, Crystal structure communications Crystal structure communications, 2021-08, Vol.77 (8), p.490-495 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 495 |
---|---|
container_issue | 8 |
container_start_page | 490 |
container_title | Acta crystallographica. Section C, Crystal structure communications |
container_volume | 77 |
creator | Lin, Jieye Oliver, Allen G. Meredith, Reagan J. Carmichael, Ian Serianni, Anthony S. |
description | Isopropyl 3‐deoxy‐α‐d‐ribo‐hexopyranoside (isopropyl 3‐deoxy‐α‐d‐glucopyranoside), C9H18O5, (I), crystallizes from a methanol–ethyl acetate solvent mixture at room temperature in a 4C1 chair conformation that is slightly distorted towards the C5SC1 twist‐boat form. A comparison of the structural parameters in (I), methyl α‐d‐glucopyranoside, (II), α‐d‐glucopyranosyl‐(1→4)‐d‐glucitol (maltitol), (III), and 3‐deoxy‐α‐d‐ribo‐hexopyranose (3‐deoxy‐α‐d‐glucopyranose), (IV), shows that most endocyclic and exocyclic bond lengths, valence bond angles and torsion angles in the aldohexopyranosyl rings are more affected by anomeric configuration, aglycone structure and/or the conformation of exocyclic substituents, such as hydroxymethyl groups, than by monodeoxygenation at C3. The structural effects observed in the crystal structures of (I)–(IV) were confirmed though density functional theory (DFT) calculations in computed structures (I)c–(IV)c. Exocyclic hydroxymethyl groups adopt the gauche–gauche (gg) conformation (H5 anti to O6) in (I) and (III), and the gauche–trans (gt) conformation (C4 anti to O6) in (II) and (IV). The O‐glycoside linkage conformations in (I) and (III) resemble those observed in disaccharides containing β‐(1→4) linkages.
The X‐ray crystal structure of isopropyl 3‐deoxy‐α‐d‐ribo‐hexopyranoside (isopropyl 3‐deoxy‐α‐d‐glucopyranoside) was determined and compared to the structures obtained previously for three related compounds. Density functional theory (DFT) calculations were used to validate the trends observed in bond lengths, angles and torsion angles in these structures. |
doi_str_mv | 10.1107/S205322962100749X |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1849017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2558144261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3358-d6994fac96205b3a8d92791c0a346f4e0a38216042f328d6684f6296dee07af73</originalsourceid><addsrcrecordid>eNqFkc1KAzEUhQdRUGofwN2gG11U8zeZGXel-FMoiKigq5Bm7tTIdFKTjNqdj6CP4ov4ED6JGeuiKOjicm4u37lwcqNoC6N9jFF6cEFQQgnJOcEIpSy_Xok22lGvna0u9etR17k7hBDGJElTvBG9Dp2ZWTObVzH9eH4pwDzNg76_tY9QVo9NkFt4CoyVtXG6gHhX_-2aVI1a4vcOY3iQVSO9riext1AXLtZ17LxtlG-srOKZtHIKHqzbjNZKWTnofmsnujo-uhyc9kZnJ8NBf9RTlCZZr-B5zkqpQmiUjKnMipykOVZIUsZLBkEzgjlipKQkKzjPWMnDFxQAKJVlSjvR9mKvcV4Lp7QHdatMXYPyAmcsR7iFdhdQSHvfgPNiqp2CqpI1mMYJkiQZSxAnPKA7P9A709g6RPiiMGOE40DhBaWscc5CKWZWT6WdC4xEe0zx65jBky88j7qC-f8G0b8ZkPNjilhGPwFgt61k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558144261</pqid></control><display><type>article</type><title>Isopropyl 3‐deoxy‐α‐d‐ribo‐hexopyranoside (isopropyl 3‐deoxy‐α‐d‐glucopyranoside): evaluating trends in structural parameters</title><source>Wiley Journals</source><source>Alma/SFX Local Collection</source><creator>Lin, Jieye ; Oliver, Allen G. ; Meredith, Reagan J. ; Carmichael, Ian ; Serianni, Anthony S.</creator><creatorcontrib>Lin, Jieye ; Oliver, Allen G. ; Meredith, Reagan J. ; Carmichael, Ian ; Serianni, Anthony S. ; Univ. of Notre Dame, IN (United States)</creatorcontrib><description>Isopropyl 3‐deoxy‐α‐d‐ribo‐hexopyranoside (isopropyl 3‐deoxy‐α‐d‐glucopyranoside), C9H18O5, (I), crystallizes from a methanol–ethyl acetate solvent mixture at room temperature in a 4C1 chair conformation that is slightly distorted towards the C5SC1 twist‐boat form. A comparison of the structural parameters in (I), methyl α‐d‐glucopyranoside, (II), α‐d‐glucopyranosyl‐(1→4)‐d‐glucitol (maltitol), (III), and 3‐deoxy‐α‐d‐ribo‐hexopyranose (3‐deoxy‐α‐d‐glucopyranose), (IV), shows that most endocyclic and exocyclic bond lengths, valence bond angles and torsion angles in the aldohexopyranosyl rings are more affected by anomeric configuration, aglycone structure and/or the conformation of exocyclic substituents, such as hydroxymethyl groups, than by monodeoxygenation at C3. The structural effects observed in the crystal structures of (I)–(IV) were confirmed though density functional theory (DFT) calculations in computed structures (I)c–(IV)c. Exocyclic hydroxymethyl groups adopt the gauche–gauche (gg) conformation (H5 anti to O6) in (I) and (III), and the gauche–trans (gt) conformation (C4 anti to O6) in (II) and (IV). The O‐glycoside linkage conformations in (I) and (III) resemble those observed in disaccharides containing β‐(1→4) linkages.
The X‐ray crystal structure of isopropyl 3‐deoxy‐α‐d‐ribo‐hexopyranoside (isopropyl 3‐deoxy‐α‐d‐glucopyranoside) was determined and compared to the structures obtained previously for three related compounds. Density functional theory (DFT) calculations were used to validate the trends observed in bond lengths, angles and torsion angles in these structures.</description><identifier>ISSN: 2053-2296</identifier><identifier>ISSN: 0108-2701</identifier><identifier>EISSN: 2053-2296</identifier><identifier>EISSN: 1600-5759</identifier><identifier>DOI: 10.1107/S205322962100749X</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>chemical synthesis ; chemistry ; Crystal structure ; crystallography ; Density functional theory ; DFT ; Disaccharides ; Ethyl acetate ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; isopropyl 3-deoxy-α-D-glucopyranoside ; isopropyl 3-deoxy-α-D-ribo-hexopyranoside ; isopropyl 3‐deoxy‐α‐d‐glucopyranoside ; isopropyl 3‐deoxy‐α‐d‐ribo‐hexopyranoside ; Parameters ; Room temperature</subject><ispartof>Acta crystallographica. Section C, Crystal structure communications, 2021-08, Vol.77 (8), p.490-495</ispartof><rights>2021 Lin et al. published by IUCr Journals.</rights><rights>Copyright Wiley Subscription Services, Inc. Aug 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3358-d6994fac96205b3a8d92791c0a346f4e0a38216042f328d6684f6296dee07af73</cites><orcidid>0000-0002-0511-1127 ; 0000000205111127</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS205322962100749X$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS205322962100749X$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1849017$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Jieye</creatorcontrib><creatorcontrib>Oliver, Allen G.</creatorcontrib><creatorcontrib>Meredith, Reagan J.</creatorcontrib><creatorcontrib>Carmichael, Ian</creatorcontrib><creatorcontrib>Serianni, Anthony S.</creatorcontrib><creatorcontrib>Univ. of Notre Dame, IN (United States)</creatorcontrib><title>Isopropyl 3‐deoxy‐α‐d‐ribo‐hexopyranoside (isopropyl 3‐deoxy‐α‐d‐glucopyranoside): evaluating trends in structural parameters</title><title>Acta crystallographica. Section C, Crystal structure communications</title><description>Isopropyl 3‐deoxy‐α‐d‐ribo‐hexopyranoside (isopropyl 3‐deoxy‐α‐d‐glucopyranoside), C9H18O5, (I), crystallizes from a methanol–ethyl acetate solvent mixture at room temperature in a 4C1 chair conformation that is slightly distorted towards the C5SC1 twist‐boat form. A comparison of the structural parameters in (I), methyl α‐d‐glucopyranoside, (II), α‐d‐glucopyranosyl‐(1→4)‐d‐glucitol (maltitol), (III), and 3‐deoxy‐α‐d‐ribo‐hexopyranose (3‐deoxy‐α‐d‐glucopyranose), (IV), shows that most endocyclic and exocyclic bond lengths, valence bond angles and torsion angles in the aldohexopyranosyl rings are more affected by anomeric configuration, aglycone structure and/or the conformation of exocyclic substituents, such as hydroxymethyl groups, than by monodeoxygenation at C3. The structural effects observed in the crystal structures of (I)–(IV) were confirmed though density functional theory (DFT) calculations in computed structures (I)c–(IV)c. Exocyclic hydroxymethyl groups adopt the gauche–gauche (gg) conformation (H5 anti to O6) in (I) and (III), and the gauche–trans (gt) conformation (C4 anti to O6) in (II) and (IV). The O‐glycoside linkage conformations in (I) and (III) resemble those observed in disaccharides containing β‐(1→4) linkages.
The X‐ray crystal structure of isopropyl 3‐deoxy‐α‐d‐ribo‐hexopyranoside (isopropyl 3‐deoxy‐α‐d‐glucopyranoside) was determined and compared to the structures obtained previously for three related compounds. Density functional theory (DFT) calculations were used to validate the trends observed in bond lengths, angles and torsion angles in these structures.</description><subject>chemical synthesis</subject><subject>chemistry</subject><subject>Crystal structure</subject><subject>crystallography</subject><subject>Density functional theory</subject><subject>DFT</subject><subject>Disaccharides</subject><subject>Ethyl acetate</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>isopropyl 3-deoxy-α-D-glucopyranoside</subject><subject>isopropyl 3-deoxy-α-D-ribo-hexopyranoside</subject><subject>isopropyl 3‐deoxy‐α‐d‐glucopyranoside</subject><subject>isopropyl 3‐deoxy‐α‐d‐ribo‐hexopyranoside</subject><subject>Parameters</subject><subject>Room temperature</subject><issn>2053-2296</issn><issn>0108-2701</issn><issn>2053-2296</issn><issn>1600-5759</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkc1KAzEUhQdRUGofwN2gG11U8zeZGXel-FMoiKigq5Bm7tTIdFKTjNqdj6CP4ov4ED6JGeuiKOjicm4u37lwcqNoC6N9jFF6cEFQQgnJOcEIpSy_Xok22lGvna0u9etR17k7hBDGJElTvBG9Dp2ZWTObVzH9eH4pwDzNg76_tY9QVo9NkFt4CoyVtXG6gHhX_-2aVI1a4vcOY3iQVSO9riext1AXLtZ17LxtlG-srOKZtHIKHqzbjNZKWTnofmsnujo-uhyc9kZnJ8NBf9RTlCZZr-B5zkqpQmiUjKnMipykOVZIUsZLBkEzgjlipKQkKzjPWMnDFxQAKJVlSjvR9mKvcV4Lp7QHdatMXYPyAmcsR7iFdhdQSHvfgPNiqp2CqpI1mMYJkiQZSxAnPKA7P9A709g6RPiiMGOE40DhBaWscc5CKWZWT6WdC4xEe0zx65jBky88j7qC-f8G0b8ZkPNjilhGPwFgt61k</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Lin, Jieye</creator><creator>Oliver, Allen G.</creator><creator>Meredith, Reagan J.</creator><creator>Carmichael, Ian</creator><creator>Serianni, Anthony S.</creator><general>International Union of Crystallography</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0511-1127</orcidid><orcidid>https://orcid.org/0000000205111127</orcidid></search><sort><creationdate>202108</creationdate><title>Isopropyl 3‐deoxy‐α‐d‐ribo‐hexopyranoside (isopropyl 3‐deoxy‐α‐d‐glucopyranoside): evaluating trends in structural parameters</title><author>Lin, Jieye ; Oliver, Allen G. ; Meredith, Reagan J. ; Carmichael, Ian ; Serianni, Anthony S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3358-d6994fac96205b3a8d92791c0a346f4e0a38216042f328d6684f6296dee07af73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>chemical synthesis</topic><topic>chemistry</topic><topic>Crystal structure</topic><topic>crystallography</topic><topic>Density functional theory</topic><topic>DFT</topic><topic>Disaccharides</topic><topic>Ethyl acetate</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>isopropyl 3-deoxy-α-D-glucopyranoside</topic><topic>isopropyl 3-deoxy-α-D-ribo-hexopyranoside</topic><topic>isopropyl 3‐deoxy‐α‐d‐glucopyranoside</topic><topic>isopropyl 3‐deoxy‐α‐d‐ribo‐hexopyranoside</topic><topic>Parameters</topic><topic>Room temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Jieye</creatorcontrib><creatorcontrib>Oliver, Allen G.</creatorcontrib><creatorcontrib>Meredith, Reagan J.</creatorcontrib><creatorcontrib>Carmichael, Ian</creatorcontrib><creatorcontrib>Serianni, Anthony S.</creatorcontrib><creatorcontrib>Univ. of Notre Dame, IN (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Acta crystallographica. Section C, Crystal structure communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Jieye</au><au>Oliver, Allen G.</au><au>Meredith, Reagan J.</au><au>Carmichael, Ian</au><au>Serianni, Anthony S.</au><aucorp>Univ. of Notre Dame, IN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isopropyl 3‐deoxy‐α‐d‐ribo‐hexopyranoside (isopropyl 3‐deoxy‐α‐d‐glucopyranoside): evaluating trends in structural parameters</atitle><jtitle>Acta crystallographica. Section C, Crystal structure communications</jtitle><date>2021-08</date><risdate>2021</risdate><volume>77</volume><issue>8</issue><spage>490</spage><epage>495</epage><pages>490-495</pages><issn>2053-2296</issn><issn>0108-2701</issn><eissn>2053-2296</eissn><eissn>1600-5759</eissn><abstract>Isopropyl 3‐deoxy‐α‐d‐ribo‐hexopyranoside (isopropyl 3‐deoxy‐α‐d‐glucopyranoside), C9H18O5, (I), crystallizes from a methanol–ethyl acetate solvent mixture at room temperature in a 4C1 chair conformation that is slightly distorted towards the C5SC1 twist‐boat form. A comparison of the structural parameters in (I), methyl α‐d‐glucopyranoside, (II), α‐d‐glucopyranosyl‐(1→4)‐d‐glucitol (maltitol), (III), and 3‐deoxy‐α‐d‐ribo‐hexopyranose (3‐deoxy‐α‐d‐glucopyranose), (IV), shows that most endocyclic and exocyclic bond lengths, valence bond angles and torsion angles in the aldohexopyranosyl rings are more affected by anomeric configuration, aglycone structure and/or the conformation of exocyclic substituents, such as hydroxymethyl groups, than by monodeoxygenation at C3. The structural effects observed in the crystal structures of (I)–(IV) were confirmed though density functional theory (DFT) calculations in computed structures (I)c–(IV)c. Exocyclic hydroxymethyl groups adopt the gauche–gauche (gg) conformation (H5 anti to O6) in (I) and (III), and the gauche–trans (gt) conformation (C4 anti to O6) in (II) and (IV). The O‐glycoside linkage conformations in (I) and (III) resemble those observed in disaccharides containing β‐(1→4) linkages.
The X‐ray crystal structure of isopropyl 3‐deoxy‐α‐d‐ribo‐hexopyranoside (isopropyl 3‐deoxy‐α‐d‐glucopyranoside) was determined and compared to the structures obtained previously for three related compounds. Density functional theory (DFT) calculations were used to validate the trends observed in bond lengths, angles and torsion angles in these structures.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><doi>10.1107/S205322962100749X</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0511-1127</orcidid><orcidid>https://orcid.org/0000000205111127</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2053-2296 |
ispartof | Acta crystallographica. Section C, Crystal structure communications, 2021-08, Vol.77 (8), p.490-495 |
issn | 2053-2296 0108-2701 2053-2296 1600-5759 |
language | eng |
recordid | cdi_osti_scitechconnect_1849017 |
source | Wiley Journals; Alma/SFX Local Collection |
subjects | chemical synthesis chemistry Crystal structure crystallography Density functional theory DFT Disaccharides Ethyl acetate INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY isopropyl 3-deoxy-α-D-glucopyranoside isopropyl 3-deoxy-α-D-ribo-hexopyranoside isopropyl 3‐deoxy‐α‐d‐glucopyranoside isopropyl 3‐deoxy‐α‐d‐ribo‐hexopyranoside Parameters Room temperature |
title | Isopropyl 3‐deoxy‐α‐d‐ribo‐hexopyranoside (isopropyl 3‐deoxy‐α‐d‐glucopyranoside): evaluating trends in structural parameters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A37%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isopropyl%203%E2%80%90deoxy%E2%80%90%CE%B1%E2%80%90d%E2%80%90ribo%E2%80%90hexopyranoside%20(isopropyl%203%E2%80%90deoxy%E2%80%90%CE%B1%E2%80%90d%E2%80%90glucopyranoside):%20evaluating%20trends%20in%20structural%20parameters&rft.jtitle=Acta%20crystallographica.%20Section%20C,%20Crystal%20structure%20communications&rft.au=Lin,%20Jieye&rft.aucorp=Univ.%20of%20Notre%20Dame,%20IN%20(United%20States)&rft.date=2021-08&rft.volume=77&rft.issue=8&rft.spage=490&rft.epage=495&rft.pages=490-495&rft.issn=2053-2296&rft.eissn=2053-2296&rft_id=info:doi/10.1107/S205322962100749X&rft_dat=%3Cproquest_osti_%3E2558144261%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2558144261&rft_id=info:pmid/&rfr_iscdi=true |