Electric vehicle fast charging infrastructure planning in urban networks considering daily travel and charging behavior
•A mathematical optimization framework for urban charging of EVs.•Minimizing the total cost and delay during charging, queuing, and detouring.•Charging behavior simulator based on land use, departure time, and trip distance.•A dynamic traffic assignment tool generates urban trajectories that need ch...
Gespeichert in:
Veröffentlicht in: | Transportation research. Part D, Transport and environment Transport and environment, 2021-04, Vol.93 (C), p.102769, Article 102769 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | C |
container_start_page | 102769 |
container_title | Transportation research. Part D, Transport and environment |
container_volume | 93 |
creator | Kavianipour, Mohammadreza Fakhrmoosavi, Fatemeh Singh, Harprinderjot Ghamami, Mehrnaz Zockaie, Ali Ouyang, Yanfeng Jackson, Robert |
description | •A mathematical optimization framework for urban charging of EVs.•Minimizing the total cost and delay during charging, queuing, and detouring.•Charging behavior simulator based on land use, departure time, and trip distance.•A dynamic traffic assignment tool generates urban trajectories that need charging.•Estimated input parameters via several meetings with various stakeholders.
Electric vehicles are a sustainable substitution to conventional vehicles. This study introduces an integrated framework for urban fast charging infrastructure to address the range anxiety issue. A mesoscopic simulation tool is developed to generate trip trajectories, and simulate charging behavior based on various trip attributes. The resulting charging demand is the key input to a mixed-integer nonlinear program that seeks charging station configuration. The model minimizes the total system cost including charging station and charger installation costs, and charging, queuing, and detouring delays. The problem is solved using a decomposition technique incorporating a commercial solver for small networks, and a heuristic algorithm for large-scale networks, in addition to the Golden Section method. The solution quality and significant superiority in the computational efficiency of the decomposition approach are confirmed in comparison with the implicit enumeration approach. Furthermore, the required infrastructure to support urban trips is explored for future market shares and technologies. |
doi_str_mv | 10.1016/j.trd.2021.102769 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1848852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1361920921000730</els_id><sourcerecordid>S1361920921000730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-e5f6dee6aed488a4ea552974bd227ae6b09af2cc1330abac8f06b276d43fbd2b3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEEuXxAews9im282giVqgqD6kSG1hbE3vSugSnGrup-vc4ChI7Vh7P3Hs0c5PkTvC54KJ82M0DmbnkUsS_XJT1WTIT1aJOZZbz81hnpUhryevL5Mr7Hee8KIpylhxXHepAVrMBt1Z3yFrwgekt0Ma6DbOupdiggw4HQrbvwLmpzw7UgGMOw7GnL89077w1SOPUgO1OLBAM2DFw5o_X4BYG29NNctFC5_H2971OPp9XH8vXdP3-8rZ8Wqc6q4qQYtGWBrEENHlVQY5QFLJe5I2RcgFYNryGVmotsoxDA7pqednE802etVHTZNfJ_cTtfbDKaxtQb-OqLl6tRBWhhYwiMYk09d4TtmpP9hvopARXY7xqp2K8aoxXTfFGz-Pkwbj9YJFGODqNxtLINr39x_0DcyGGtg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electric vehicle fast charging infrastructure planning in urban networks considering daily travel and charging behavior</title><source>Elsevier ScienceDirect Journals</source><creator>Kavianipour, Mohammadreza ; Fakhrmoosavi, Fatemeh ; Singh, Harprinderjot ; Ghamami, Mehrnaz ; Zockaie, Ali ; Ouyang, Yanfeng ; Jackson, Robert</creator><creatorcontrib>Kavianipour, Mohammadreza ; Fakhrmoosavi, Fatemeh ; Singh, Harprinderjot ; Ghamami, Mehrnaz ; Zockaie, Ali ; Ouyang, Yanfeng ; Jackson, Robert ; Michigan Department of Environment, Great Lakes, and Energy (EGLE), Lansing, MI (United States)</creatorcontrib><description>•A mathematical optimization framework for urban charging of EVs.•Minimizing the total cost and delay during charging, queuing, and detouring.•Charging behavior simulator based on land use, departure time, and trip distance.•A dynamic traffic assignment tool generates urban trajectories that need charging.•Estimated input parameters via several meetings with various stakeholders.
Electric vehicles are a sustainable substitution to conventional vehicles. This study introduces an integrated framework for urban fast charging infrastructure to address the range anxiety issue. A mesoscopic simulation tool is developed to generate trip trajectories, and simulate charging behavior based on various trip attributes. The resulting charging demand is the key input to a mixed-integer nonlinear program that seeks charging station configuration. The model minimizes the total system cost including charging station and charger installation costs, and charging, queuing, and detouring delays. The problem is solved using a decomposition technique incorporating a commercial solver for small networks, and a heuristic algorithm for large-scale networks, in addition to the Golden Section method. The solution quality and significant superiority in the computational efficiency of the decomposition approach are confirmed in comparison with the implicit enumeration approach. Furthermore, the required infrastructure to support urban trips is explored for future market shares and technologies.</description><identifier>ISSN: 1361-9209</identifier><identifier>EISSN: 1879-2340</identifier><identifier>DOI: 10.1016/j.trd.2021.102769</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Charging station planning ; Detour ; Electric vehicles ; ENERGY PLANNING, POLICY, AND ECONOMY ; ENVIRONMENTAL SCIENCES ; Environmental Sciences & Ecology ; Fast charging ; Queue ; System optimization ; Transportation ; Urban network</subject><ispartof>Transportation research. Part D, Transport and environment, 2021-04, Vol.93 (C), p.102769, Article 102769</ispartof><rights>2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-e5f6dee6aed488a4ea552974bd227ae6b09af2cc1330abac8f06b276d43fbd2b3</citedby><cites>FETCH-LOGICAL-c385t-e5f6dee6aed488a4ea552974bd227ae6b09af2cc1330abac8f06b276d43fbd2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1361920921000730$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1848852$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kavianipour, Mohammadreza</creatorcontrib><creatorcontrib>Fakhrmoosavi, Fatemeh</creatorcontrib><creatorcontrib>Singh, Harprinderjot</creatorcontrib><creatorcontrib>Ghamami, Mehrnaz</creatorcontrib><creatorcontrib>Zockaie, Ali</creatorcontrib><creatorcontrib>Ouyang, Yanfeng</creatorcontrib><creatorcontrib>Jackson, Robert</creatorcontrib><creatorcontrib>Michigan Department of Environment, Great Lakes, and Energy (EGLE), Lansing, MI (United States)</creatorcontrib><title>Electric vehicle fast charging infrastructure planning in urban networks considering daily travel and charging behavior</title><title>Transportation research. Part D, Transport and environment</title><description>•A mathematical optimization framework for urban charging of EVs.•Minimizing the total cost and delay during charging, queuing, and detouring.•Charging behavior simulator based on land use, departure time, and trip distance.•A dynamic traffic assignment tool generates urban trajectories that need charging.•Estimated input parameters via several meetings with various stakeholders.
Electric vehicles are a sustainable substitution to conventional vehicles. This study introduces an integrated framework for urban fast charging infrastructure to address the range anxiety issue. A mesoscopic simulation tool is developed to generate trip trajectories, and simulate charging behavior based on various trip attributes. The resulting charging demand is the key input to a mixed-integer nonlinear program that seeks charging station configuration. The model minimizes the total system cost including charging station and charger installation costs, and charging, queuing, and detouring delays. The problem is solved using a decomposition technique incorporating a commercial solver for small networks, and a heuristic algorithm for large-scale networks, in addition to the Golden Section method. The solution quality and significant superiority in the computational efficiency of the decomposition approach are confirmed in comparison with the implicit enumeration approach. Furthermore, the required infrastructure to support urban trips is explored for future market shares and technologies.</description><subject>Charging station planning</subject><subject>Detour</subject><subject>Electric vehicles</subject><subject>ENERGY PLANNING, POLICY, AND ECONOMY</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Environmental Sciences & Ecology</subject><subject>Fast charging</subject><subject>Queue</subject><subject>System optimization</subject><subject>Transportation</subject><subject>Urban network</subject><issn>1361-9209</issn><issn>1879-2340</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRSMEEuXxAews9im282giVqgqD6kSG1hbE3vSugSnGrup-vc4ChI7Vh7P3Hs0c5PkTvC54KJ82M0DmbnkUsS_XJT1WTIT1aJOZZbz81hnpUhryevL5Mr7Hee8KIpylhxXHepAVrMBt1Z3yFrwgekt0Ma6DbOupdiggw4HQrbvwLmpzw7UgGMOw7GnL89077w1SOPUgO1OLBAM2DFw5o_X4BYG29NNctFC5_H2971OPp9XH8vXdP3-8rZ8Wqc6q4qQYtGWBrEENHlVQY5QFLJe5I2RcgFYNryGVmotsoxDA7pqednE802etVHTZNfJ_cTtfbDKaxtQb-OqLl6tRBWhhYwiMYk09d4TtmpP9hvopARXY7xqp2K8aoxXTfFGz-Pkwbj9YJFGODqNxtLINr39x_0DcyGGtg</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Kavianipour, Mohammadreza</creator><creator>Fakhrmoosavi, Fatemeh</creator><creator>Singh, Harprinderjot</creator><creator>Ghamami, Mehrnaz</creator><creator>Zockaie, Ali</creator><creator>Ouyang, Yanfeng</creator><creator>Jackson, Robert</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20210401</creationdate><title>Electric vehicle fast charging infrastructure planning in urban networks considering daily travel and charging behavior</title><author>Kavianipour, Mohammadreza ; Fakhrmoosavi, Fatemeh ; Singh, Harprinderjot ; Ghamami, Mehrnaz ; Zockaie, Ali ; Ouyang, Yanfeng ; Jackson, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-e5f6dee6aed488a4ea552974bd227ae6b09af2cc1330abac8f06b276d43fbd2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Charging station planning</topic><topic>Detour</topic><topic>Electric vehicles</topic><topic>ENERGY PLANNING, POLICY, AND ECONOMY</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Environmental Sciences & Ecology</topic><topic>Fast charging</topic><topic>Queue</topic><topic>System optimization</topic><topic>Transportation</topic><topic>Urban network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kavianipour, Mohammadreza</creatorcontrib><creatorcontrib>Fakhrmoosavi, Fatemeh</creatorcontrib><creatorcontrib>Singh, Harprinderjot</creatorcontrib><creatorcontrib>Ghamami, Mehrnaz</creatorcontrib><creatorcontrib>Zockaie, Ali</creatorcontrib><creatorcontrib>Ouyang, Yanfeng</creatorcontrib><creatorcontrib>Jackson, Robert</creatorcontrib><creatorcontrib>Michigan Department of Environment, Great Lakes, and Energy (EGLE), Lansing, MI (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Transportation research. Part D, Transport and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kavianipour, Mohammadreza</au><au>Fakhrmoosavi, Fatemeh</au><au>Singh, Harprinderjot</au><au>Ghamami, Mehrnaz</au><au>Zockaie, Ali</au><au>Ouyang, Yanfeng</au><au>Jackson, Robert</au><aucorp>Michigan Department of Environment, Great Lakes, and Energy (EGLE), Lansing, MI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electric vehicle fast charging infrastructure planning in urban networks considering daily travel and charging behavior</atitle><jtitle>Transportation research. Part D, Transport and environment</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>93</volume><issue>C</issue><spage>102769</spage><pages>102769-</pages><artnum>102769</artnum><issn>1361-9209</issn><eissn>1879-2340</eissn><abstract>•A mathematical optimization framework for urban charging of EVs.•Minimizing the total cost and delay during charging, queuing, and detouring.•Charging behavior simulator based on land use, departure time, and trip distance.•A dynamic traffic assignment tool generates urban trajectories that need charging.•Estimated input parameters via several meetings with various stakeholders.
Electric vehicles are a sustainable substitution to conventional vehicles. This study introduces an integrated framework for urban fast charging infrastructure to address the range anxiety issue. A mesoscopic simulation tool is developed to generate trip trajectories, and simulate charging behavior based on various trip attributes. The resulting charging demand is the key input to a mixed-integer nonlinear program that seeks charging station configuration. The model minimizes the total system cost including charging station and charger installation costs, and charging, queuing, and detouring delays. The problem is solved using a decomposition technique incorporating a commercial solver for small networks, and a heuristic algorithm for large-scale networks, in addition to the Golden Section method. The solution quality and significant superiority in the computational efficiency of the decomposition approach are confirmed in comparison with the implicit enumeration approach. Furthermore, the required infrastructure to support urban trips is explored for future market shares and technologies.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.trd.2021.102769</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1361-9209 |
ispartof | Transportation research. Part D, Transport and environment, 2021-04, Vol.93 (C), p.102769, Article 102769 |
issn | 1361-9209 1879-2340 |
language | eng |
recordid | cdi_osti_scitechconnect_1848852 |
source | Elsevier ScienceDirect Journals |
subjects | Charging station planning Detour Electric vehicles ENERGY PLANNING, POLICY, AND ECONOMY ENVIRONMENTAL SCIENCES Environmental Sciences & Ecology Fast charging Queue System optimization Transportation Urban network |
title | Electric vehicle fast charging infrastructure planning in urban networks considering daily travel and charging behavior |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A38%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electric%20vehicle%20fast%20charging%20infrastructure%20planning%20in%20urban%20networks%20considering%20daily%20travel%20and%20charging%20behavior&rft.jtitle=Transportation%20research.%20Part%20D,%20Transport%20and%20environment&rft.au=Kavianipour,%20Mohammadreza&rft.aucorp=Michigan%20Department%20of%20Environment,%20Great%20Lakes,%20and%20Energy%20(EGLE),%20Lansing,%20MI%20(United%20States)&rft.date=2021-04-01&rft.volume=93&rft.issue=C&rft.spage=102769&rft.pages=102769-&rft.artnum=102769&rft.issn=1361-9209&rft.eissn=1879-2340&rft_id=info:doi/10.1016/j.trd.2021.102769&rft_dat=%3Celsevier_osti_%3ES1361920921000730%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1361920921000730&rfr_iscdi=true |